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General context

We work in the setting of 2-category theory to understand equivalences given by taking prime
or compact elements appearing in denotational semantics and categorical logic. These appear
under the name of compact/finite/finitely presented object, atomic object, join irreducible,
join prime. We will show that these can all be put into a common picture using the language
of lax-idempotent (KZ) monads [Koc95; Zob76|, which are commonly thought of as free
cocompletions under a class of colimits. In previous work these ideas have been considered in
isolation. A first step towards this can be seen in [DL18| where the authors recover duality
theorems by axiomatizing accessibility.

Research problem

This internship was aimed at introducing the study of mnemetic lax-idempotent monads,
which provide a particularly pleasant contexts for studying cocompletions. The specific ques-
tion was to find out when the inclusion from the basic data to the continuous algebras of the
monad is a local equivalence. This question naturally set the stage for the general study of
what a generator is with respect to a lax-idempotent monad.

This is a first step towards a general theory of generators for lax-idempotent monads, ab-
stracting and unifying several constructions previously treated separately, such as in domain
theory, realizability, and categorical logic. In a similar vein to [ADL23; DL18|, we develop
formal category theory in the setting of lax-idempotent pseudomonads.

Using this approach we obtain a synthetic approach to studying generators, that is without
regard to the base 2-category. The main application so far is to recover results showing that
certain objects are freely generated via different cocompletions. We also recover new notions
of generator in the setting of free opfibrations on a functor [Koc13|.

Contribution

We generalized the ideas of compact element, way below relation and having enough compact
elements from domain Theory to the setting of lax-idempotent monads. These constructions
are new and moreover give a conceptual answer to the original questions, namely taking
generators is right adjoint to taking free continuous algebras. The advantage of the gained
generality is that we can now capture many standard examples using the same technology
while being able to formally prove theorems about them. The approach was to have a col-
lection of examples from a wide range of topics from domain theory and topos theory to
fibrations and realizability. This way we were able to find the common denominator of the
constructions.

Arguments supporting its validity

The work has been mathematical in nature, thus all the claims come with proofs or references
to their proofs. We claim that the given definitions are appropriate because of:



1. the generality and simplicity of the proofs they give rise to
2. the wide range of applications.

These applications range from lattice theory all the way to topos theory, type theory and
higher category theory.

Our results rely on the observation that in CAT and in Pos, Kan extensions are computed
pointwise, this assumption breaks down in a lot of other 2-Categories. Nonetheless the exam-
ples of CAT and Pos contain all the classical results we wanted to generalize and we plan on
making the same treatment work for other 2-Categories by considering Virtual Equipments
[CS09].

Summary and future work

We used the technology of lax-idempotent pseudomonads on 2-categories to define what it
means to be a generator for an algebra using purely arrow theoretic arguments. We call
this notion T-compactness, that is a notion of generator indexed by a given lax-idempotent
pseudomonad. In the case of the Ind-construction, T-compactness recovers standard notion
of compact/finitely presented object. Using this we developed the tools to study new notions
of generator using a simple recipe.

More surprisingly we found that our treatment of lax-idempotent pseudomonads is a kind
of lax-idempotent generalization of the work on monadic descent by |[Mes06].

The main contribution is theorem 5.15| stating that taking generators is right adjoint to
taking free continuous algebras. This gives a conceptual way of understanding equivalences
between cauchy completions and T-compactly generated objects.

The next step will be to work in the more appropriate setting of virtual equipments
to capture more exotic examples of generator. We have identified two such examples that
we expect to yield new theorems with applications to semantics of dependent type theory,
realizability and higher category theory. Namely the Monoidal Categories are lax-idempotent
over Multicategories [Her01|, and Opfibrations are lax-idempotent over CAT/B [Koc13].
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1 Introduction

A cocompletion of a category is a universal way of freely adjoining certain colimits. Under
mild size conditions each of these cocompletions give rise to a pseudomonad on locally small
categories. These satisfy a certain adjointness property which makes them more pleasant
to work with, these are known as laz-idempotent (or KZ) pseudomonads [Koc95; Z6b76].
This lax-idempotent pseudomonad makes sense for other 2-categories than just locally small
categories, for example partially ordered sets admit many naturally occurring lax-idempotent
pseudomonads. Among them is the sup-cocompletion adjoining arbitrary joins to a poset, this
is done using the down-set construction. The goal of this report is to develop a general frame-
work for understanding how cocompletions give rise to “generators” through their associated
lax-idempotent pseudomonads. For example in the case of the directed-join-cocompletion on
posets, we obtain the standard notions of finite element and way below relation from domain
theory.

2 Background

2.1 2-Categories

A 2-category is morally a category with arrows between the arrows, the prime example be-
ing CAT which has objects locally small categories, morphisms functors and 2-cells natural
transformations.

Definition 2.1. A 2-category B consists of:
— a class of objects (denoted A, B,C),

— for each pair A, B, a category B(A, B), whose objects are called arrows, and morphisms
2-cells. We the composition of 2-cells is called vertical composition,

for each object A an identity arrow idy € B(A, A),

for each triple of objects A, B,C a horizontal composition functor (— o pc —) :
B(B,C) x B(A,B) - B(A, (),

making the following diagrams commute:

1. Associativity:

idg(c,p)%°a,B,C
—_—

B(C,D) x B(B,C) x B(A, B) B(C, D) x B(A,C)

OB,C,DXidB(A,B)k %A,GD

B(B, D) x B(A, B) B(A, D)

©A,B,D

2. Unit Laws:

(idp(a,B)»ida)

B(A, B) B(A, B) x B(A, A)

id
(idB,idB(AYB))‘ w BOA,A’B

B(B, B) x B(A, B) SABD B(A, B)



We will always write f o g instead of f o4 pc g. For 2-cells we write vertical composition
as awo 3 and horizontal composition as ax 3. We also use the standard notation for whiskering
af := axidy and fo := idy*a for an arrow f and a 2-cell o which are compatible. Horizontal
composition has lower priority than vertical composition, i.e. is short for

a*[joy*&:(a*ﬁ)o(fy*d)_

Example 2.2. The 2-category Pos has objects partially ordered sets (X, <) and hom-categories
Pos(X,Y) non-decreasing functions with their pointwise order viewed as a category.

Example 2.3. The 2-category CAT has as objects locally small categories and functors as
arrows and natural transformations as 2-cells. Similarly 2-category Lex has as objects finitely
complete locally small categories and finite limit preserving functors as arrows and natural
transformations as 2-cells.

Example 2.4. For any 2-category B given an object A € By, we can construct the slice-2-
category B/A which has objects arrows with codomain A, morphisms commuting triangles
and 2-cells are of the form

/
X oy
Y
a b ’
A

i.e. 2-cells in B such that ba = a for a,b € B/A.

2.2 Universal Constructions in a 2-Category

Definition 2.5. An adjunction in a 2-category B is given by a pair of arrows [ : A — B
and r : B — A together with 2-cells 17 : id4 = 7l and € : [r = idp such that

el oln = id;
and
reonr = id,.
We denote this situation by I — r.
Definition 2.6. [SW78| Given arrows f : A — X and k : A — B in a 2-category B, a

left extension of f along k is a universal pair (I : B — X,«a : f = lk): That is for
any other pair h : B — X, : f — hk there is a unique v : [ = h such that 8 = vk o a.

a SN

A—1 L x A—1 L x

We write lang f for the arrow of the left extension of f along p when it exists.
A left extension (I, «) of f along k is absolute if given any arrow g : X — Y, (gl, ga) is
a left extension of gf along k.




The following are the lesser known duals of extensions, a good reference is [Di +17].

Definition 2.7. [SW78| Given arrows f : A — B and p: E — B in a 2-category B, a left
lift of f along p is a universal pair (I : A — E,« : f = pl): That is for any other pair
h:A— E B : f — ph there is a unique factorization v : [ = h such that § = py o a.

N

A—71 B A—>B

We write lift, f for the arrow of the left lift of f along p when it exists.
A left lift (I, ) of f along p is absolute if given any arrow g : C' — A, (lg,ag) is a left
lift of fg along p.

The definition is exactly saying that we have a left extension in the opposite 2-category,
thus left lifts are unique up to unique iso. Of course we can dualize all these to obtain right
extensions and right lifts in the same way.

The following lemma states that adjunctions are a special case of left lifts.

Lemma 2.8. (2.4 of [Di +17]) Given arrowsl: A — B and r: B — A such thatl - r in B
with unit n : idg = rl, then (I,n) is an absolute left lift of r along idy.

Conversely if (n,1) is an absolute left lift of r along ids, then we can construct a counit
€ : lr = idp such that (I,7,m,€) is an adjunction.

We will make extensive use of inverters which should be thought of as a 2-categorical
analogue of an equalizer which can take 2-cells into account. A more thorough treatment of
inverters can be found in Section B1.15 of [Joh02].

Definition 2.9. In a 2-category B with arrows f,g : A - B and a 2-cell « : f = g, an
inverter of « is an arrow ¢ : X — A such that:

— o 1s invertible.

— For every object Y € B, the functor — o : B(Y,X) — B(Y, A) is full and faithful with
its replete image in arrows which invert «, that is if af is invertible for some f: Y — A,
then there is some f : X — A such that to f = f.

3 Basics of Lax-Idempotent Monads

3.1 Lax-Idempotent Monads as a Setting for Cocompletions

Lax-idempotent pseudomonads capture the idea of cocompletion. The most common examples
are the down-set completion and the ideal completion on posets and the presheaf construction
or the Ind-completion on locally small categories. The organizing power of lax-idempotent
monads is for example being used by [Blo25] to generalize common 1-categorical arguments
to that of (00, 1)-categories in a painless way.

It can also be seen from [ADL23| that lax-idempotent monads can give a satisfactory context
for formal category theory. Moreover we will see that certain dualities can also be viewed



from this perspective.
A definition of pseudomonads can be found in Appendix [A]

Definition 3.1. A pseudomonad (T : B — B, u,n) on a 2-category B is lax-idempotent (or
KZ) [Koc95; Zob76] when for every object X € B, we have an adjunction

wx = Nrx,

such that the invertible counit is given by the left unitor [x : pux o nrx = idrx In this case
it was shown (cf. [Joh02]), we also get

Tnx = pux.

This situation can then be summarized by saying for each object X, we obtain two adjunctions

T2X
Tnx <—| /JX —|> nrx -
l
TX

We will refer to lax-idempotent pseudomonads as lax-idempotent monads.

In [MW12], the authors showed that a lax-idempotent monad can be specified very effi-
ciently.

Definition 3.2. A left Kan pseudomonad T on a 2-category B is given by
— a function Ty : By — By
— for each object X € B, an arrow nx : X — TX

— for every arrow f : X — TY a left extension along nx:

x—1 7y

nx /F

TX

fT

satisfying that

1. the following is a left extension for each X € B:
X —X 71X




2. foreach f: X > TY andg:Y — TZ:
T
xX—1 s1v—9% 1z

nx /F

TX
, the arrow g7 o fT is a left extension of gT o f along nx.

fT

Lemma 3.3. [MW12] Every laz-idempotent monad T : B — B arises from a left Kan pseu-
domonad with the action on arrows given by

T(f:A— B):=lan,,(nBf)

and the multiplication is given by

ux = IannTX ide.

3.2 Many Examples of Lax Idempotent Monads
The following example is the general shape that we will consider here.

Proposition 3.4. There is a lax-idempotent monad Ind : CAT — CAT specified by the fol-
lowing left Kan pseudomonad on CAT:

— On objects, define Ind(C) < Set®” defined on the presheaves which are small filtered
colimits of representables

— The unit maps n¢ : C — Ind(C) are given by the Yoneda embedding restricted on its
codomain

Section 3.1 shows that the action on morphisms (functors) F : A — B is given by the
following left Kan extension:
g

A £ B

W W

| ]
Ind(A) —a 4By

Moreover the multiplication is given on objects C € CAT by
pe (i € Ind?*(0)) := coIim(fzb — Ind(C)).

Here {1 is the category of elements of v [Awo00).

Example 3.5. [PT21] There is a lax-idempotent monad P : CAT — CAT specified by the
following left Kan pseudomonad on CAT:

— On objects, define P(C) < Set®” defined on the presheaves which are small colimits of
representables



— The unit maps n¢ : C — P(C) are given by the Yoneda embedding on its codomain

Example 3.6. [Gie+80] A subset S of a poset X is down-closed if s € S and t < s, implies
t € S. A subset S of a poset X is directed if it is non-empty and for any s,t € S there is
u € S such that s < w and t < u.

There is a lax-idempotent monad Idl : Pos — Pos specified by the following left Kan
pseudomonad on Pos:

— On objects, define IdI(X) := {S < X|directed and down-closed}

— The unit maps nx : X — IdI(X) are given by principal down-sets nx (z) :=y € X|y < x.

3.3 The 2-category of Algebras for a Lax Idempotent Monad

For pseudomonads there are multiple notions of algebra, we will only consider the pseudo-
algebras (cf. and content ourselves with the fact that for lax-idempotent monads
they are easy to detect. When it is clear from context we will refer to pseudo-T-algebras for
a given lax-idempotent monad T as algebras.

Proposition 3.7. [Koc95;|Z5b76] The algebras of a laz-idempotent monad (T : B — B, u,n)
are objects X € B such that the unit nx has a left adjoint with invertible counit €, that is
a - nx and € : anx = id.

Remark 3.8. This means that being an algebra for a lax-idempotent monad is a property.

Remark 3.9. Let (X, a), (Y, ) be algebras for a lax-idempotent monad T : B — B and let
f: X — Y be an arrow B. We can always construct a 2-cell f: T f = fa as follows:

idrx X Tf
N
\unit\\1 nx i
TX @ X
f

This is exactly the mate [KS06] of 7.

Example 3.10. In the case of Idl : Pos — Pos, take X,Y € Dcpo and consider a non-
decreasing function f : X — Y, the 2-cell f tells us that for any directed set S < X,

VIS <fVS.
Definition 3.11. [KLI7|] A morphism f : (X,a) — (Y, ) of algebras for a lax-idempotent
monad is an arrow f : A — B such that the mate f is invertible.

Example 3.12. For any morphism f: X - Y, Tf: TX — TY is an algebra morphism.

Proposition 3.13. [KL97] For any laz-idempotent monad T : B — B, there is a 2-category

T-Alg which has as objects algebras, morphisms algebra morphisms and as 2-cells the original
2-cells of B.



Example 3.14. The monad P from has as algebras locally small cocomplete categories
CoCompCat.

The monad Ind from has as algebras posets admitting all directed joins, these are called
directed complete partialy ordered sets (DCPO), we denote this 2-category of algebras
by Dcpo.

The following lemma is a formal version of the fact that left adjoints preserve colimits.

Proposition 3.15. For laz-idempotent monads, left adjoints are always morphisms of alge-
bras.

Proof. Consider algebras (X, ) and (Y, ) for a lax-idempotent monad T : B — B and assume
we have a morphism [ : X — Y € B with a right adjoint r : ¥ — X. We wish to show that
la = BTI via a canonical isomorphism. To do this notice that a 4 nx and I 4 r. Now since
adjoints compose, we have that

la 4 nxr

And we have that nxr = Trny by naturality, giving us that
BTl A Trny.
Now left adjoints are unique up to unique isomorphism, so la =~ GTI. O

Corollary 3.16. For any algebra (X,a), a: TX — X is an algebra morphism.

4 Compactness

Now we introduce a notion of compactness parametrized by a lax-idempotent monad. The
idea is to recover the usual notions of generator appearing in the literature, for example
projective objects, finitely presented objects or connected objects and unify their study.

Definition 4.1. A generalized element z : A — X of an algebra (X, «) is T-compact if
(nxw,cx : © = anxz) is an absolute left lift of = along o

TX

where cx : anx = idx is the invertible counit of @ 4 nx. In particular this means that we
have a natural bijection we have a natural bijection:

NXT = U
T = au

stable under precomposition.

Remark 4.2. The way to think about this is to say that around x, o behaves like a right
adjoint to nx.



Proposition 4.3. For the Ind-completion, a finitely presented object X € .AE] s exactly one
for which X : 1 — A is Ind-compact.

Proof. Assume X : 1 — A is Ind-compact and consider a diagram D : [ — A with I a filtered
category. Denote 1 := colim(n4 o D) the associated object in Ind(.A). So now:

A(X,colimD) = A(X, ar))
= Ind(A)(naX, )

Ind(A) (54X, colim Jw s A > Ind(A))

lle

lle

colim;erInd(A)(naX, naCi)
=~ colim;er A(X, Cy)

12

The second to last step used that all representables are finitely presented. The converse
direction is easy. O

Remark 4.4. This style of proof crucially relies on the fact that n4 : A — Ind(A) is fully
faithful. This suggests that this style of argument fits into the setting of Yoneda structures
[Wall7].

Example 4.5. For the monad Idl from given a X € Dcpo an element z : 1 — X
is ldl-compact exactly when it is compact or finite in the sense of |Gie+80].

Remark 4.6. For the complete story to work one would need to work in the general setting
of a virtual equipment to recover the right notion of generator, we will leave this for future
work.

The following definition is a generalization of coherent morphisms of coherent locales
[Joh82].

Definition 4.7. An algebra morphism f : (X, a) — (Y, ) is coherent if it preserves compact
objects, that is if x : A — X is compact then fx: A — Y is compact.

Proposition 4.8. Given algebras (X, «) and (Y, ), any left adjoint | : (X,a) — (Y, ) in
the 2-category of algebras T-Alg is coherent.

Proof. Let r : (Y, ) — (X, a) be an algebra morphism which is right adjoint to [ in T-Alg.
So it is in particular a right adjoint in B.

We have to show that given a compact object x : A — X of (X,a), we have that
lx : A—Y is compact in (Y, «). So take any diagram v : A — TY in Y and notice

'Recall that an object X € A is finitely presented if for any filtered diagram D : [ — A

A(X, colim;er D(i)) = colim;er A(X, D(4))

10



nyler = u
Tinxx = u
nxx = Tru

r=aTru

r = rfu

lx = Bu

Thus Iz is compact. O

5 Factorization

Next we introduce continuous algebras for lax-idempotent monads on a 2-category and de-
scribe a way of deducing from every lax-idempotent monad on a 2-category with enough limits
an adjunction between the base category and the category of continuous algebras. A similar
idea has been studied before in the descent theory for categories of modules by [Mes06], in
which the conceptual meaning of the induced adjoint was not explored. We will show that
the right adjoint from continuous algebras to the base 2-category takes a continuous algebras
to its object of generators.

For the rest of this section we consider a fixed 2-category B together with a lax-idempotent
monad (T : B — B, u,n).

5.1 Continuous Algebras of Lax-Idempotent Monads

Definition 5.1. A continuous algebra for T is a triple (X, a, Ax) such that (X,«) is a
T-algebra and « has a further left adjoint Ax : X — TX. A morphism of continuous

algebras is a morphism of algebras f : (X,a,Ax) — (Y,8,)y) such that the mate f
TfAx = Ay f of f, which we defined in is invertible

Ax Tf

X TX TY
A 71
: f
//unzt a B8
idx
X
f

Notice that the triple of adjoints for a continuous algebra (X, a,Ax) always induces a
2-cell, which we will denote 0x : Ax = nx.

Example 5.2. For the continuous algebras are the completely distributive cat-
egories CDistCat from [MRW12|. For the continuous algebras are the continuous
posets |Gie+80], hence the name.

Remark 5.3. Every free algebra of a lax-idempotent monad is continuous by definition.

The next lemma should be taken as a categorification of: an element is compact in the
sense of domain theory if and only if it is way below itself, see for example chapter 1 of
[Gie+80).

Lemma 5.4. For a continuous algebra (X, «), a generalized element x : A — X is T-compact
if and only if Oxx is invertible.

11



Proof. (=) Since we have that nxx and Axz are both left lifts there is a canonical iso between
them and it must invert 0x.

(<) Since fxx is invertible, nxx =~ Az, and A is a left adjoint and thus an absolute left
lift of the identity, hence nxx is an absolute left lift. O

Corollary 5.5. The unit nx : X — TX is always compact.
Proof. By any TX is a continuous algebra with the adjoint cylinder given by

T2X
T77X<—| #‘X —>ﬁTX .
|
TX

Notice that naturality tells us that nrxnx = Tnxnx and the fact that this isomorphism
is given by frx can be found in [Koc95]. Thus the unit is compact. O

Lemma 5.6. Coherent algebra morphisms between free algebras are automatically morphisms
of continuous algebras.

Proof. Take objects X,Y € B and an algebra morphism f : TX — TY such that for any
z: A — X compact, fr : A —> Y compact. We want to show that Tf o Tnx = Tnyf. By

the unit nx is always compact. Thus frnx is compact by assumption. Thus by
[theorem 5.4t

TfTnxnx = Tfnrxnx
= nry fnx
=~ Tny fnx

Now notice that all the morphisms involved here are in fact algebra morphisms so by the
universal property of free algebras

TfoTnx =Tnyf.
L]

Remark 5.7. In light of one could hope that coherent algebra morphisms are
automatically in the image of F'ree. This is not the case. We will see a counterexample in
bection 7l

Lemma 5.8. [Koc95] The category of continuous algebras T-Cont for T is exactly the category
of coalgebras for the comonad S := UF on algebras.

T S:=FU
% : )
B . J(} T-Alg

Corollary 5.9. There is a comparison functor Free : B — T-Cont induced by the adjunction
F4U.

12



F
B < L T-Alg
S U
S L
>
Free ™« R
.
T-Cont

Free is given on objects and morphisms by T. In particular this means that forany f : X - Y,
Tf:TX — TY is a morphism of continuous algebras.

Lemma 5.10. Continuous algebra morphisms are coherent.

Proof. Take a morphism of continuous algebras f : (X,a,Ax) — (Y, 5, \y) and a compact
object x: A — X of X. And we would like to show that fz : A — Y is compact in Y:

ny fr = u
Tfoxz = u
Tfixz = u
Ay fe=u
fr= pu
Which concludes the proof. ]

5.2 A Factorization Theorem

Definition 5.11. An adjoint cylinder in a bicategory B consists of two adjunctions! 4 a - u
such that au =~ id and al =~ id. This configuration always induces a two-cell 0 : [ = u.

Example 5.12. Every continuous algebra (X, a, nx) induces an adjoint cylinder Ax - a - nx.

Definition 5.13. We say that a 2-category B has inverters of adjoint cylinders if the
induced two cell of any adjoint cylinder admits an inverter.

This can be seen as a lax version of having coreflexive equalizers.

Proposition 5.14. If B has inverters of adjoint cylinders, then there is a pseudofunctor
K : T-Cont — B taking a continuous algebra to the inverter of its induced adjoint cylinder

(cf- [theorem 5.17).

Proof. On objects K(X, a, Ax) is the inverter of fx. By |Section 5.1} any continuous algebra

morphism f : (X, o, Ax) — (Y, 8, A\y) preserves compact objects, which by [theorem 5.4{inverts
the canonical 2-cell 0x : Ax = nx and thus induces a morphism between the inverters.

TX TY

X —fr——Y
Lx Ly
KX K} > KY

13



By this assignment is functorial and that it extends to a pseudofunctor. [

Now we are ready to state the main theorem of this section.

Theorem 5.15. If B has inverters of adjoint cylinders and (T, p,n) is a laz-idempotent
monad on B, then Free 4 K form a biadjunction between B and the category of continuous
algebras T-Cont making the left adjoints in the following diagram commute:

Proof. The existence of the pseudofunctor K is by [theorem 5.14] Explicitly, given a continuous

algebra
TX
>\<'—1 j‘[ —|> nx -
X
We can consider the inverter of the induced 2-cell 8 : A = nx:
TX
]
Al =—— |nx
X
ix
KX

Which we denote by (KX, tx). The unit ux : X — KTX of the adjunction Free - K is
given by the universal property of ¢x.

T2X
0
T"7X —— 5 nNTx

TX

X —---ux---» KTX
The counit cx : TKX — X is given by the following composite:

Tix

TKX >y TX = X .

14



Notice that cx is an algebra morphism.
The triangle identities will be essentially automatic once we show that cx is indeed a
morphism of continuous algebras.

Consider:

TexTokx = T(aTex)Tokx
= T(aTixnkx)
~ T(anxtx)
=~ T(Lx)

and on the other hand:
)\CX = )\OzTiX

Now by [Section 3.3| Ax is an algebra morphism. Hence Acx and T(tx) are algebra morphisms
defined on the free algebra TKX. So we can use the universal property of free algebras to
check isomorphism on the generators by precomposing with 7k x.

Aexnkx = AaTixnkx
~ danxtx
~ Ny
=nxix
= Tixnkx
Thus Acx = TexTnkx making cx is a continuous algebra morphism.

Therefore F' — K. O

Corollary 5.16. For any X € B admitting a T-algebra structure, we have that KT X =~ X.
Proof. Since LF = F we have that KR =~ U by uniqueness of adjoints up to iso. Thus
KR(X,a) =2 K(TX, ux)
~U(X,q)
=X

Example 5.17. For P : CAT — CAT, |t eorem 5.15| gives
h
CAT CoCompCat

N

CDistCat
The adjunction Free 4 K is idempotent and the induced monad on CAT is the usual

Cauchy completion monad.

Definition 5.18. Going off the example P, we call the induced monad KFree : B — B the
T-Cauchy monad.

We will see in that this monad need not be idempotent.
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5.3 Mnemetic Monads
In light of ffheorems 5.15] and [5.18] we would like to know when Free 4 K becomes idempotent.

Definition 5.19. A lax-idempotent monad T : B — B on a 2-category is pre-mnemetic if
the inverter tx : KT X — TX of O1x : Tnx = nrx exists and the arrow Tux in the diagram
T2X » T2KTX

Tnx <—| ﬂf —<> nTx <—< l —|>
Tux > TKTX

TX
L]

TIKTX

| ~ |

X ux » KTX
is an equivalence, where ux is the canonical arrow into the inverter.

Remark 5.20. For pre-mnemetic monads the T-Cauchy monad is idempotent, in which case
it truly is a kind of Cauchy completion.

Definition 5.21. A lax-idempotent monad T : B — B on a 2-category is mnemetic if nx is

an inverter of Opx :
T2X
Tnx <g>> nTx
TX

|

nx

X

Remark 5.22. Mnemetic monads are a lax-idempotent variation of the monads of descent
type as defined in [Mes06].

It is now easy to check that each mnemetic monad is in fact pre-mnemetic. Moreover we
get the following easy consequences.

Proposition 5.23. A laz-idempotent monad T : B — B on a 2-category B with inverters of
adjoint cylinders is pre-mnemetic if and only if the induced adjunction Free 4 K is idempotent.
Moreover we call fized points the Cauchy complete objects corresponding to T and the
objects generated by their T-compact objects preserving the generators.

Corollary 5.24. A laz-idempotent monad T on a category with inverters of adjoint cylinders
is mnemetic if and only if the induced functor Free is a local equivalence.

Remark 5.25. This holds even without the inverters existing.

Theorem 5.26. Any pre-mnemetic monad T factors as an idempotent monad followed by a
mnemetic monad.

Remark 5.27. Mnemetic monads are always locally fully faithful in the sense of [Wall7|, thus
mnemetic monads are particularly close to Yoneda structures.
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Remark 5.28. This means that a lax-idempotent monad is mnemetic if the base 2-category
has Cauchy complete objects.

Definition 5.29. A continuous algebra (X, @) has enough T-compact objects if the counit
cx : TKX — X is an equivalence.

From this we recover a similar theorem to that of [Mes06| for nuclear adjunctions
[PH21] (adjunctions which are monadic and comonadic).

Corollary 5.30. The left adjoint F : T-Alg — B is comonadic if and only if T is mnemetic
and each continuous algebra has enough compact objects.

We are due for some examples.

Example 5.31. If we instantiate [theorem 5.15| with the Ind construction on locally small
categories we obtain an adjunction:

ndCat
> »
Ind
Cat _ 7 ontCat
K

Moreover since taking the compact elements of the ind-completion recover the Cauchy
completion we have an induced equivalence, once we restricted to small categories

Catsmall,cc = Accfirm

where Accyj, has finitely accessible categories with functors preserving compact objects.
Moreover if we do the same for the Ind-completion on finitely cocomplete categories we
get a kind of covariant Gabriel Ulmer Duality:

Rex ~ LFP.

A usecase of the mnemeticity condition is that detecting free subalgebras simplifies. The
proof can be found in the appendix [C.6]

Proposition 5.32. If T : B — B is mnemetic and B has inverters of adjoint cylinders, then
if Ae B and (X, a, \x) such that

i
X T TA
l

with i : X — TA a representably full and faithful continuous algebra morphism. In other
words X is a reflective continuous subalgebra of TA. Then cx : TKX — X is an equivalence
of continuous algebras.

The following came out of conversations with Nathanael Arkor.

Corollary 5.33. If (X,a, \) is a continuous algebra such that A has a further left adjoint,
then X is a free algebra. Thus the adjunction Cofree — Forget is nuclear.
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Example 5.34. We have that Frm — Dlat is monadic with the left adjoint given on objects
by Idl. From this it is easy to see that the induced monad on Dlat is mnemetic. Thus

theorems 5.15] and [5.24] apply

Dlat
(_/

Frm

Free

I Dlat_C nt

The continuous algebras are continuous locales with a stronger condition on the generators,
since A : L — IdIpjat(L) has to be a Dlat morphism. These are called stably locally compact
locales [Tow22]

Note that compactness stays the same as for Idl on Pos.

Now the essential image of Free is exactly CohLoc? from [Joh82] giving us the known
equivalence Dlat ~ CohLoc?.

Remark 5.35. There ought to be a similar version for toposes of this.

6 Way Below arrows and Slim Cocones

We now give a generic way of obtaining a way below relation from a lax-idempotent monad.
Answering the folklorish question of how to generalize the wavy arrows appearing in the
context of continuous categories.

Definition 6.1. Let T : B — B be lax-idempotent, and let (X, «) be an algebra.
Foru:A— TX andx: A — X, we view 2-cells k : aou — x as (parametrized) cocones.
Since in ordinary category theory, cocones are in correspondence with arrows out of colimits.
We call the cocone & slim, if for every v : A — TX and ¢ : x — aowv there exists a unique
vy :u— v with a vy = ¢k:

au AN

v
T av

Moreover this property should be absolute in the sense that slim cocones are stable under
right whiskering.

Slim cocones are in a sense absolute left lifting diagrams which have a leg pointing the
wrong way.

We say that k is colimiting if it is invertible.

Proposition 6.2. If k : au = z is a slim colimiting cocone, then (u, k') is an absolute left
lift: w = liftox with an invertible cell.

18



Corollary 6.3. Slim colimiting cocones are unique up to isomorphism.

Corollary 6.4. A is continuous iff every parametrized object a : X — A is the vertex of a
slim colimit cocone au — a.

Proof. (=) Since A is continuous we have a furthest left adjoint A 4 a which is always an
abolute left lift [lift,id 4, moreover since it is a coreflection the two cell is invertible. Thus
precomposing with any parametrized object a : X — A gives an absolute left lift with invert-
ible two cell Aa = llift,a.

(<) Take the slim colimit cocone associated to id4 : A — A to obtain an absolute llift,ida
together with an invertible two cell, thus this left lift will be the desired left adjoint. O

Definition 6.5. Let T : B — B be lax-idempotent, and let (X, a) be an algebra.

A way-below arrow between generalized elements z,y : A — X isa 2-cell y: x —> y
such that the 2-cell obtained from the counit of the adjunction defining the algebra structure
anxx — y is a slim cocone.

Proposition 6.6. A parametrized object x : A — X is compact iff the identity x — x is a
way-below arrow

7 The counterexample

Definition 7.1. A subset C' < D of a dcpo D is Scott-closed if it is down-closed and closed
under directed joins.

Lemma 7.2. (Cf. Lemma 4 [VTO04]) There is a left adjoint cl : Dcpo — Sup making the
forgetful functor U : Sup — Dcpo monadic. It sends a dcpo D to its lattice cl(D) of Scott-
closed sets. Moreover the induced monad cl := U o cl is laz-idempotent.

Remark 7.3. The lax idempotence can be seen from the framework of conservative cocom-
pletions |[Lam]. Since X € Dcpo, cl(X) adds in the missing finite joints while keeping the
directed joins.

The following proposition tells us that we indeed recover the right notion of compactness
for cl from [HZ09], which they called C-compactness.

Proposition 7.4. An element x : 1 — L of a suplattice is cl-compact if and only if
c < \/ A=ce A
for all A € cl(L).
Proof. By definition z is cl-compact iff | x = lift, \/, that is
l:ccclAc)xé\/A.
But the left to right direction is trivial giving us the desired result. O

Proposition 7.5. Let D be a depo, and A S cl(D) a Scott-closed set of Scott closed sets.
Then | J A is Scott-closed in D.
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Proof. Consider a directed family a : (I,<) — | J.A. Then for every i € I there exists an
A; € A with a; € A;. Define A} = ﬂj>i A;. Then the A} are also all closed and in A and
contain a;. We have a = \/, a; € |J; 4} < \/, A} € A and therefore a € [ J A. O

Remark 7.6. The equalizer (inverter)
K(TD) — TD =3 T?D

consists precisely of the cl-compact elements of TD. It clearly contains all principal downsets,
but there there might be more!

Consider Johnstone’s dcpo J [Joh06] whose underlying set is N x Ny, and where (i,n) < (j,m)
iff either ¢ = j and n < m or m = o0 and n < j.

Proposition 7.7. J is cl-compact in cl(J).

Proof. Assume that J is the supremum (and therefore the union) of a closed set A < cl(7).
Then for all i there is an A; € A such that (i,00) € A; and therefore B; = Nx {0,1,...,i}e A
since it’s a closed subset of A;. Then J is the directed join of the B; and it must be contained
in A since since A is assumed to be closed. O

We observe that TJ is J with a new greatest element adjoined. But in KT 7, the original
J is again closed and cl-compact and not principal, so (KT)27 adds yet another element
under the greatest element added in the first step. It seems that transfinite iteration never
stops.

Corollary 7.8. The induced adjunction Free 4 K from|theorem 5.15 need not be idempotent.
That is there are non pre-mmnemetic lax-idempotent monads.
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A Background on Pseudomonads

Pseudomonads encode structure which is defined up to isomorphism, for example a monoidal
structure on a category. A complete set of references for the constructions in this section is
[Lei98; [BKP89; |Lac00].

Definition A.1. Let B and C be 2-categories, a pseudofunctor F : B — C consists of the
following data:

— A function Fg : By — Cp, where for A € B we denote Fo(A) as F(A)

For each pair of objects A, B € B, a functor F4 g : B(A, B) — C(A, B) where we again
denote F4 g(f) as F(f)

— For each object A € B an invertible 2-cell Fiq, : idg4) = F(ida)

— For each triple A, B, C' € B a natural isomorphism (naturalin f : A > Bandg: B — C)
Fo.r 1 Flg) o F(f) = F(go f)
This datum is required to make two diagrams commute which appear in [Lei98].
Definition A.2. Given 2-categories B and C with pseudofunctors F,G : B — C between
them, a pseudonatural transformation « : F = G is given by:

— For each object A € B, an arrow a4 : F(A) — G(A) in C

— For each arrow f: A — B e B, an invertible 2-cell a : G(f) o s = ap o F(f).
And this datum has to satisfy coherence diagrams [Lei98].

Definition A.3. A modification between pseudonatural transformations o, : F = G,
denoted 0 : o = [ is given by a family of 2-cells 64 : a4 = (4 indexed by objects A € B such
that for each arrow f: A — B the following square commutes:

G(f)aa — %, G(f)8a
Qg By
apF(f) —2D 5 gor(f)

Definition A.4. Let B be a 2-category, a pseudomonad (T : B — B, u,n) consists of the
following data:

— A pseudofunctor T : B — B
— pseudonatural transformations: p: T? = T, n:id = T
— invertible modifications: A: ponT = id, p: poTn=id and a: poTpu = pouT.

These are required to satisfy two diagrams which can be found in [Lac00)].

23


http://eudml.org/doc/172368

B Noetherian objects

With the greatest amount of bad intent one could call an algebra (X, a) of a lax-idempotent
monad T on a 2-category Noetherian if idy : X — X is compact in the sense of
It is not too hard to show that these are the fixed points of the monad.

Lemma B.1. An algebra (X, «) is Noetherian if and only if a : TX — X is an equivalence.

Proof. The only if direction is clear. For the other direction, take (X, ) Noetherian, so idx
is compact, thus nx = nxidx = lift,idx is an absolute left lift. Thus by

nx 4 a.

Thus nx is an algebra morphism by Hence by the universal property of free
algebras we have that

nxanx =nx,

which implies that nxa =~ idtx. Thus « is an equivalence. O
Proposition B.2. Any reflective subalgebra of a Noetherian algebra (X, «) is Noetherian.

Proof. Take a reflective subalgebra A € X with inclusion reflection r — i. By r
preserves compact objects, thus by absoluteness of compact objects r oidx o ¢ is compact in
A. Hence idy4 is compact in A, so A is Noetherian. O

Proposition B.3. Any algebra coreflection of a Noetherian algebra (X, «) is Noetherian.
Proof. Same proof. O

Corollary B.4. Noetherian spaces are closed under quotients and subspaces.

C Definable compactness

We can do a tiny bit better than [5.15| even if we don’t have inverters.

Definition C.1. Compactness is definable for an algebra (X, «) if there is a universal
compact arrow ¢ : KX — X, that is:

— Lx is compact

— For every object Y € B: —ov: B(Y,X) — B(Y, A) is full and faithful with its replete
image in compact arrows for X

This defines the 2-category T-Algys of algebras with definable compactness, coherent
algebra morphisms and 2-cells of B.

Proposition C.2. Compactness is definable for continuous algebras precisely when the in-
verter of their canonical 2-cell exists.

With this definition in hand we can drop the restrictions of [theorem 5.15

24



Theorem C.3. Any lax-idempotent monad T : B — B induces an adjunction between B and
T-Algges such that L o Free =~ F':

T

Q F

U
Free
L
X
\

T-Cont

Definition C.4. An algebra (X, «) with definable compactness ‘has enough compact objects’
if the counit cx : TKX — X is an equivalence.

Corollary C.5. A laz-idempotent monad is mnemetic precisely is Free is a local equivalence
and pre-mnemetic precisely if Free 4 K is idempotent.

We now quickly return to the proof of ftheorem 5.32

Proposition C.6. Assume T : B — B is mnemetic and B has inverters of adjoint cylinders.
And assume A € B and that (X, o, Ax) is a continuous algebra such that

X T TA
1

with i : X — TA a representably full and faithful continuous algebra morphism. In other
words X is a reflective continuous subalgebra of TA. Then X has enough compact objects,
that is cx : TKX — X is an equivalence of continuous algebras.

Proof. We construct a pseudoinverse to cx. Denote tx : KX — X the canonical inclusion and

notice that by [5.5] 14 is compact. By [Section 4]! preserves compact objects, thus ing : A — X
is compact. The universal property of tx gives us a factorizing morphism f : A — KX such

that txf =~ Ina

(3¢ na -

Let g : X —» TKX be the composite

T

X L L TA TKX .

Since ¢ is a continuous algebra morphism, g is continuous algebra morphism.

So gocx : TKX — TKX is a continuous algebra morphism defined on free algebras,
thus by mnemeticity nkxK(g o cx) = g o cx onkx. Now since we are working with algebra
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morphisms defined over free algebras we can check equivalences on generators

gocxnkx = T(f)iaT(ex)nkx
= T(f)ianxtx
~ T(f)iex.

Thus T(f)itx = nkxK(gocx). So precomposing with cx gives us on one hand
CXUKXK(Q o CX) = LxK(g o Cx).
And on the other hand

exT(f)ix =

Q

T(ex)T(f)iex
aT(x ficx
~ aT(Ina)itx
T()T(na)iex
lpaT(na)iex
>~ liLy

lle

lIe
Q

lle

=Ly

Hence K(g o c¢x) =~ idgx and by [theorem 5.24
(g o C)() = Free(idKX).
And the other direction is now immediate

cxg =aT(x)T
(LXf)
(Ina)i
~ oT()T(na)i
>~ lpaT(na)i
~ g

Eidx

So cx is an equivalence of continuous algebras.

O]

Remark C.7. A similar argument shows that assuming T is lax idempotent and X — TA is a
reflective subalgebra, then cx has a section. The problem is that ¢x need not be representably

fully faithful in general as in

D A big list of examples

In this final section we wanted to show that lax-idempotent monads come in many forms each

giving rise to different interesting notions of generator!

The shape column indicates the kind of diagrams that we cocomplete under, all means all

26



(small) diagrams, finite means only finite diagrams, etc. The case of cocartesian arrows is in
reference to turning an arbitrary functor F' : F — B over a fixed base B into an opfibration
OP(F): F' | B — B. This defines the action of a lax-idempotent monad [Koc13].

Question marks correspond to notions of compactness we don’t have a name for yet. D
and Dy, are the down-set constriction and the finitely generated down-set construction re-
spectively. Fam is the families construction/ free coproduct completion. Reg is the reg/lex
completion, Ex is the ex/lex completion. And finally Env is the envelope of a multicategory,
which has been shown to be lax-idempotent in for example [Her01].

2-Category Shape L.I. Monad Algebras T-Compactness Reference

Pos all D Sup Completely-join-prime element |GG24]

Pos directed Idl Dcpo join-prime element |Gie+80]

Pos finite Dyq v-Lat finite/compact element |GG24] (Exercise 1.3.8)
CAT all P CoCompCat atomic object [PT21]

CAT directed Ind IndCoCompCat finitely presented object |Joh82| (Ch. VI)
CAT discrete Fam CoprodCocompCat  connected object |CJ95]

CAT sifted Sind SIindCoCompCat ? |ARO1

Lex image factorizations Reg RegCat regular projective object |CV98]

Lex effective quotients Ex ExCat effective projective object |CV98]

AddCat effective quotients Ex AbCat effective projective object |RVO1]

CAT/B cocartesian arrows ~ OP OpFib(B) ? |Koc13]

MultiCat representables Env MonCat ? |Her01

This last example Env : MultiCat — MultiCat is special in another way. Namely it is an
example of theorem 5.30, which has been shown in [EMO07] for symmetric Multicategories.
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