
RFSA via Functors

Quentin Schroeder

June 30, 2024

Abstract

This report presents a new perspective on the minimization of Residual
Finite State Automata (RFSA) using the functorial framework of [4]. Our
method essentially attempts to explain the relationship between the category
of automata over complete join semi-lattices (JSLA) and non deterministic
automata, which are modeled over the category whose objects are sets and
morphisms are relations. The expected result was that the canonical RFSA
[6] can be obtained by taking the irreducibles of the the canonical JSLA. How-
ever this is only partly true. The algebraic description of a canonical RFSA
turns out to be more subtle than originally thought. We found a canonical
lax functor J from the category of join semi-lattices to the category of rela-
tions. The functor being lax means that it does not preserve composition of
morphisms, but one has an inclusion instead. This laxness poses some subtle
problems, but we can nevertheless show that despite the canonical RFSA not
being in the image of that functor, it instead be freely generated by the action
of J on the transitions.

1 Introduction

In this report we will give a new perspective on the minimization of residual finite
state automata [6] in the functorial framework of [4] – which neatly combines the
algebraic and coalgebraic approaches to automata theory.

Context

There has been many approaches to unify big parts of automata theory through the
language of category theory. The oldest of which is probably the coalgebraic ap-
proach [9], but there has also been very recent approaches using monads to capture
the notion of recognizability [2]. Or the fibrational approach of [11], which gives
another potential account of how to deal with non deterministic automata. Lastly
there is the functorial approach to minimization of [4], which is the context in which
we find ourselves for this report.
The latter gives a general framework of viewing automata minimization through the
language of category theory, expressing automata as certain kinds of functors and
minimization as a result of image factorization. A powerful example they give is

1

a fully abstract explanation for the Brzozowski algorithm for minimization of de-
terministic automata via a chain of adjunctions. This approach works very well
for categories satisfying certain mild assumptions, namely the existence of some
products and coproducts as well as a reasonable factorization system. This is not
the case for the category of relations, which is used to model non-deterministic
automata. This explains why minimization of non-deterministic automata is prob-
lematic. Furthermore there is a large body of work trying to give different accounts
of minimal non-deterministic automata [3, 7, 10, 14]. Fundamental for our devel-
opment is the paper of [6] on residual finite state automata. Closely related to our
approach is the work of Adámek et al. [1] on closure spaces. Our goal was to
explain RFSA using the functorial framework and to show the relationship to the
minimization of join-semilattice automata.
This report was made in the context of the ”travail de recherche encadré” at the
Master Parisien de Recherche en Informatique under the supervision of Daniela
Petrişan. It was a 6 ECTS course which is usually completed alongside the second
semester of the first year of the master.

Contributions

The contributions of this report are an interpretation of RFSA in the functorial
framework via a (lax) functor from the category of join-sup-semilattices to the
category of relations.

2 Functorial approach

We start with some preliminaries. We will sometimes leave out complete technical
definitions and proofs for the sake of readability. If the reader is interested in a more
formal account, they can be found in the references.

Definition 2.1 (Category [12]). A category C is a collection of objects obpCq

together with a set of morphisms Cpx, yq for each pair of objects x, y and a com-
position operation for all objects x, y, z:

˝ : Cpy, zq ˆ Cpx, yq Ñ Cpx, zq

Furthermore each set Cpx, xq contains a morphism idx : x Ñ x called the iden-
tity on x. This data is subject to unity and associtivity axioms. Namely, for any
f : x Ñ y P Cpx, yq, f ˝ idx “ f “ idy ˝ f . Lastly, for f : x Ñ y, g : y Ñ z,
h : z Ñ w, we have:

h ˝ pg ˝ fq “ ph ˝ gq ˝ f

Notice the abuse of notation, we will often write f : x Ñ y P C to mean f P Cpx, yq

and x P C for x P obpCq. This should never be ambiguous from context.

2

Remark 2.1. One major advantage of working with categories is the proof technique
they give rise to, the diagram chase. We will often encounter situations where we
have equations between morphisms. A quick example would be the unity axioms of
2.1:

x y

x

f

idx
f

To understand what this means, fix two verticies off the graph, for example the
bottom left x and the top right y and read off each label the edges along a directed
path of the graph. Such a path corresponds to a composition of morphisms, so the
path x ´ x ´ y corresponds to f ˝ idx. We say this diagram commutes since the
other direct path x ´ y corresponds to f and f ˝ idx “ f .
A diagram commutes if each directed path with the same start and end points cor-
responds to the same composite morphism.

Example 2.1.1. Fix some alphabet Σ, and denote the set of words over Σ by Σ˚.

1. SET has sets as objects and functions between them as morphisms, the iden-
tity on every set X is the function idX : X Ñ X, mapping x ÞÑ x. The
composition is function composition which is associative and the unity is easy
to check.

2. REL has sets as objects and relations as morphisms, the identity on every
set X is the diagonal relation idX : X ­Ñ X where px, yq P idX iff x “ y.
Composition is given by composition of relations S ˝ R “ tpx, zq | Dy :
xRy and ySzu.

3. VECT has vector spaces as objects and linear maps as morphisms.

4. For any directed multigraph G, we can build the free category FreepGq,
which has vertices of G as objects and directed paths in G as morphisms.
Composition is given by joining two paths at their end and start points. Iden-
tities are given by empty paths.

5. We will use the category O, which is the free category on the following multi-
graph, where each word w P Σ˚ has an associated arrow from P to out . We
will see later that this multigraph can be used to understand the language
accepted by an automaton:

in out@wPΣ˚:ŹwŸ

3

6. The category I which is the free category following graph having three ver-
ticies in, st , out and where for each input letter in a P Σ we have an edge
a : st Ñ st :

in st outŹ Ÿ

@aPΣ,a:stÑst

The starting point for the functorial approach of [4] is that various forms of
automata can be obtained by interpreting the edges in last item of Example 2.1.1
as morphisms of various categories capturing a certain effect of the automaton such
as non-determinism. For example a DFA can be modelled by interpreting the inter-
preting the edges as functions between sets:

1 Q t0, 1u
q0 F

@δaPΣ,a:stÑst

Similarly we can represent an NFA by interpreting the edges in the graph above
as relations:

1 Q 1
I F

@δaPΣ,a:stÑst

From a category theoretic point of view ‘interpreting’ edges amounts to giving
a functor – a notion that we introduce next.

Definition 2.2 (Functor). A functor F : C Ñ D from a category C to a category
D consists of a mapping F : obpCq Ñ obpDq on objects and for each pair of objects
x, y in C, a function Fx,y : Cpx, yq Ñ DpF pxq, F pyqq such that:

– @x P obpCq : F pidxq “ idF pxq

– @f : x Ñ y, g : y Ñ z P C : F pg ˝ fq “ F pgq ˝ F pfq

Example 2.2.1.

– P : SET Ñ SET the powerset functor, takes a function f : X Ñ Y to
Ppfq : PpXq Ñ PpY q, with S ÞÑ fpSq.

– ι : O Ñ I, is the inclusion taking Ź w Ÿ to Ÿ ˝an ˝ ¨ ¨ ¨ ˝ a0˝ Ź, where
w “ a0a1 . . . an. This inclusion will be relevant to understand the language
accepted by an automaton.

4

– Given any two functors F : A Ñ B and G : B Ñ C, we can compose them
to get a new functor G ˝F : A Ñ C, which sends a P obpAq to GpF paqq and
f P Apx, yq to GpF pfqq.

– For any category C, the identity functor idC : C Ñ C is the functor that
sends x P obpCq to x and f P Cpx, yq to f .

Definition 2.3 (Automata). Given a category C, a C-automaton A is a functor
A : I Ñ C, where I is is the free category described in Example 2.1.1. The language
accepted by such an automaton A is the composite functor L :“ A ˝ ι : O Ñ C,
where ι is the inclusion defined in Example 2.2.1.

The intuition behind this definition is that O is a full subcategory of I that ab-
stracts away the inner structure of the automaton and only looks at its observable
behavior, that is its language.

Example 2.3.1. So far we restated the definitions from traditional automata theory
via category theory, in the usual cases of SET and REL we recover the usual notions
of deterministic automaton, non-deterministic automaton and the languages they
accept.

– SET-automata A : I Ñ SET with Apinq “ 1 and Apoutq “ B :“ tK,Ju

correspond to deterministic automata.
Indeed, Apstq gives the set of states Q for the automaton, specifying a map
ApŹq : 1 Ñ Apstq amounts to picking out the initial state q0 of the automa-
ton. Furthermore ApŸq : Apstq Ñ B corresponds the final states F . Lastly
for each a P Σ, Apaq : Apstq Ñ Apstq is the usual transition map of a deter-
ministic automaton δa. A word is accepted if ApŹ ˝an ˝ ¨ ¨ ¨ ˝a0 ˝ Ÿqp‹q “ J,
that is if Apwqpq0q “ δ˚pw, q0q P F , which is exactly the usual acceptance
condition for deterministic automata.

– REL-automata A : I Ñ REL such that Apinq “ 1 and Apoutq “ 1 corre-
spond to non-deterministic automata.
The relation ApŹq : 1 ­Ñ Apstq corresponds to the set of initial states I of
the automaton. And the relation ApŸq : Apstq ­Ñ 1 corresponds the final
states F of the automaton. Lastly for each a P Σ, Apaq : Apstq ­Ñ Apstq is
just another way of stating the usual transition relation δa. Here again we
can check that A accepts w iff ApwqrIs X F ‰ H, which is the usual notion
of acceptance for non-deterministic automata.

Definition 2.4 (Natural Transformation). For functors F,G : C Ñ D, a natural
transformation α : F Ñ G is a family of morphisms αx : F pxq Ñ Gpxq P D for
each object x P obpCq such that for any f : x Ñ y P C, the following diagram

5

commutes:
Fx Gx

Fy Gy

αx

Ff Gf

αy

We say that α is natural in x.
This definition tends to be a bit abstract. The idea is that it should not matter if
we change from the image of F to G before or after applying a morphism in C.
So it is a way of coherently transforming the image of F to the image of G.

Example 2.4.1.

– For the powerset functor P : SET Ñ SET, the natural transformation η :
idSET ñ P is given by ηX : X Ñ PpXq, x ÞÑ txu.
This is a way of embedding a set into its powerset.

– For the powerset functor P : SET Ñ SET, the natural transformation ϵ :
P ˝ P ñ P is given by µX : PpPpXqq Ñ PpXq, S ÞÑ

Ť

S.
This is a way of removing a layer of nesting in the powerset.

– For SET-automata A,B : I Ñ SET, an atomaton morphism is a natural
transformation α : A ñ B such that its components at in, out are the
identity, that is we have three morphisms:

– αin : Apinq Ñ Bpinq, which is the identity of 1

– αst : Apstq Ñ Bpstq, which is some function mapping on states

– αout : Apoutq Ñ Bpoutq, which is the identity of B

Now we will see an example of naturality in action, for Ź: in Ñ st , we have
the following naturality square:

Apinq Bpinq

Apstq Bpstq

αin

ApŹq BpŹq

αst

Notice that the top arrow is just identity so we can identity that part of the
diagram to obtain:

1

Apstq Bpstq

ApŹq BpŹq

αst

6

Through a similar argument we find that the following also commutes:

B

Apstq Bpstq

ApŸq

αst

BpŸq

And lastly for each a P Σ, we have the following commutative square:

Apstq Bpstq

Apstq Bpstq

αst

Apaq Bpaq

αst

These three diagrams specify that α is given by a morphism between the state
spaces of the automata, which behaves well with respect to the initial and
final state as well as with the transitions. In all the examples considered we
retrieve the usual notion of morphism of automata.

– More generally for any C-automata A,B : I Ñ C, a morphism of C-
automata is a natural transformation α : A ñ B such that αin “ idApinq

and αout “ idApoutq.

Proposition 2.1. C-automata form a category.

Definition 2.5 (Initial, Terminal object).
An object x in a category C is initial if for any object y P obpCq there is a unique
morphism ! : x Ñ y.
An object x in a category C is terminal if for any object y P obpCq there is a unique
morphism ! : y Ñ x.

Example 2.5.1.

– In SET, the empty set is initial and any singleton set is terminal.

– In REL, the empty set is initial and terminal.

– In JSL3.2, the initial and terminal objects are both B, the two element lattice
tK,Ju with K ď J.

Remark 2.2 (Universal Constructions). A common theme in category theory is the
idea of universal constructions, which are ways of defining objects in a category by
their relationship to other objects.
The initial and terminal objects are the simplest examples of this, but there are
many more, which for the sake of brevity we will not go into here.
That said we have to mention the following:

7

– products in a category are a generalization of the cartesian product of sets.
We usually denote the product of a family of objects pXiqi by

ś

i

Xi.

– coproducts in a category are a generalization of the disjoint union of sets.
We usually denote the coproduct of a family of objects pXiqi by

š

i

Xi.

– left Kan extension is the least constrained of extending the domain of a
functor along another functor.

– dually a right Kan extension is the most constrained of extending the domain
of a functor along another functor.

For full accounts of these we refer the reader to [12].
The intuition of a Kan extension can be illustrated by the following simpler

example in the setting of partially ordered sets X,Y, Z and order preserving maps
f : X Ñ Z and k : X Ñ Y we have two reasonable ways (assuming the right
meets and joins exists) of constructing an order preserving function g : Y Ñ Z.

The first is to approximate elements of Y through k from below and then apply
f , explicitly gpyq “

Ž

kpxqďy fpxq, this corresponds to the left Kan extension of f

along k and gives us that f ď g ˝ k.1

X Z

Y

f

k
g

ď

The second is to approximate elements of Y through k from above and then apply
f , explicitly gpyq “

Ź

yďkpxq fpxq, this corresponds to the right Kan extension of f
along k and gives us that g ˝ k ď f .

X Z

Y

f

k
g

ě

The left and right Kan extension give us two ”optimal” ways of approximating a
functor f through a functor k.

The Kan extensions are of interest to us because they give two universal ways
of finding automata accepting a given language L, namely, the initial, respectively

1Note that a partially ordered set pX,ďq can be seen as a very simple category whose objects
are the elements of X and with at most one morphisms from x to y, whenever x ď y.

8

the terminal automaton in the category of automata accepting L.

O C

I

ι

L

Proposition 2.2. The left Kan extension of a C-language along the inclusion
ι : O Ñ I is the initial C-automaton accepting that language and exists if C
has countable products2.
Dually the right Kan extension of a C-language along the inclusion ι : O Ñ I is
the terminal C-automaton accepting that language and it exists if C has countable
coproducts.

Example 2.5.2.
Furthermore, Kan extensions of languages along the inclusion can be computed
explicitly in many cases.

– The initial SET-automaton accepting L is given by:

Apstq “ Σ˚

ApŹqpJq “ ϵ

ApŸqpwq “ J iff w P L

Apaqpwq “ wa

– The terminal SET-automaton accepting L is given by:

Apstq “ PpΣ˚q

ApŹq “ L

ApŸqpSq “ J iff ϵ P S

ApaqpSq “ a´1S “ tw | wa P Su

– The initial REL-automaton accepting L is given by:

Apstq “ Σ˚

ApŹq “ tϵu

ApŸq “ L

Apaq “ tpw,waq | w P Σ˚u

2In [4] this is stated using powers and copowers, which is more general.

9

– The terminal REL-automaton accepting L is given by:

Apstq “ Σ˚

ApŹq “ L

ApŸq “ tϵu

Apaq “ tpwa,wq | w P Σ˚u

Notice that neither the initial, nor the terminal SET-automaton accepting a
language L are the minimal automaton for this language. But they are nevertheless
relevant for minimization. It was noticed in [4] that the unique map from the
initial SET-automaton to the terminal one is given by the function Σ˚ Ñ PppqΣ˚q

mapping w P Σ˚ to w´1L. Hence two such words w,w1 are identified by this map
when w´1L “ w1´1L, hence when they are equivalent with respect to the Myhill-
Nerode equivalence relation. So the image of this map is precisely the state space
of the minimal automaton for L. This situation generalizes to weighted automata,
subsequential transducers, syntactic monoids, etc. To move away from SET to other
categories, we need a category theoretic way of generalizing quotients or images of
functions. This is given by the notion of factorization system below.

Definition 2.6 (factorization system [13]). A factorization system in a category C
is a pair of classes of morphisms pE ,Mq such that each class contains all morphisms
and is closed under composition. Furthermore we require each f : X Ñ Y P C to
have a factorization of the form:

X Impfq Ye

f

m

Where e is in E and m is in M.
And lastly for each square:

X Z

Y W

f

e mD!

g

where e P E , m P M and f, g are C morphisms, we have a unique morphism going
from Y to Z making the square commute. The intuition is what is most important
here, we are simply stating that any morphism can be factored into a surjection
followed by an injection.

We will later see that the notion of factorization system lets us define a mini-
mization procedure for automata in a very general way.

Example 2.6.1.

10

– In SET, the factorization system is given by E the class of surjections and M
the class of injections.

– The category REL has trivial factorization systems, but they do not behave
well with respect to cardinality of sets, hence they are not useful in practice.

Definition 2.7 (Divisibility). Given a factorization system pE ,Mq in a category C
and objects X,Y P C, we say that X (E ,Mq-divides Y if there is an object A
such that:

A

Y X

m
e

Where e P E and m P M.
An object X is pE ,Mq-minimal if for any object Y such that X pE ,Mq ´ divides
Y .

Remark 2.3. In the category SET, we have that if X pE ,Mq-divides Y , then the
cardinality of X is less than or equal to the cardinality of Y . So divisibility encodes
the notion of size in SET. Which we will use to be able to define a minimization
procedure for automata.

Proposition 2.3. Given a factorization system pE ,Mq in a category C, we can
construct a factorization system pE 1,M1q on the category of C-automata.

Proposition 2.4 (sufficient structure for minimization). If a category C has a
factorization system pE ,Mq an initial object and a final object, then there is a
pE ,Mq-minimal object M in C. And it can be obtained via the image factorization
of the unique morphism I Ñ F , where I is the initial object and F is the final
object of C.

Proposition 2.5 (lifting structure for minimization [4]). If a category C has a
factorization system pE ,Mq and C has countable powers and copowers then the
category of C-automata has a factorization system pE 1,M1q, an initial and terminal
automaton and thus by 2.4 a pE 1,M1q-minimal object.

Example 2.7.1. For SET-automata, the minimal object is the following automaton
accepting L:

Apstq “ tw´1L | w Pu

ApŹq “ L

ApŸq “ tϵu

Apaq “ a´1L

This is exactly the Myhill-Nerode minimization procedure for DFAs. Our goal
will be to use a similar procedure with JSL-automata and then relate them to the
canonical residual finite state automata of [6].

11

Definition 2.8 (Reachability Obserability). Given a category C with initial object
I and a factorization system pE ,Mq and an object X P C, we define reachpXq to
the image of the factorization:

I reachpXq X

!

We say that X is reachable if reachpXq – X.
Dually if C has a terminal object F and a factorization system pE ,Mq and an

object X P C, we define obspXq to the image of the factorization:

X obspXq F

!

We say that X is observable if obspXq – X.

Example 2.8.1. These definition are a bit too general, we will just note that in
SET-automata, for an SET-automaton A is reachable precisely when every state is
reachable from the initial state. Similarly for REL-automata, an REL-automaton A
is reachable precisely when every state is reachable from the set of initial states.

3 Minimization in JSL

Our goal will be to give a full presentation of the minimal join-semi-lattice au-
tomaton for a language. We begin with an account of the basic properties of
join-semilattices, distribute lattices and frames, which are the main objects of study
in this section.

Definition 3.1 (Lattice). A lattice is a partially ordered set pL,ďq in which every
pair of elements x, y P L has a greatest lower bound x^ y and a least upper bound
x _ y.

Definition 3.2 (JSL). A complete join semi-lattice (JSL) pL,ď,
Ž

q is a partially
ordered set L,ď together with a join operation

Ž

: PpLq Ñ L such that for any
subset S of L:

1. for any s P S, s ď
Ž

S

2. for any x P L, if @s P S : s ď x, then
Ž

S ď x

The first condition states that
Ž

S is an upper bound of S.
The second condition states that

Ž

S is the least upper bound of S.
This definition also implies that L has a greatest element J “

Ž

L and a least
element K “

Ž

H.

12

Remark 3.1.

– The join operation is idempotent, commutative and associative.

– The join operation is monotone in each argument.

– Every complete jsl is a complete lattice, so it has an operation
Ź

which
corresponds to the greatest lower bound of a set.

– Every complete lattice is of course also a lattice.

– A finite JSL is a lattice with a top and bottom element.

Example 3.2.1. Let PpXq denote the powerset of a set X. The following are
examples of complete join semi-lattices.

– the booleans: B “ tK,Ju with K ď J and J _ K “ J

– the powerset of any set X with the join given by unions: pPpXq,Ď,
Ť

q

– the unit interval with the supremum operation pr0, 1s,ď, supq

– the natural numbers with an adjoined top element J with the maximum
operation pNJ,ď,maxq

– logical propositions over some set of atoms, with the existential quantifier

– the opens of a topological space with the union operation

Definition 3.3 (Hasse Diagram). For any finite JSL L, we can represent its elements
via Hasse diagrams, which place elements from least to greatest with respect to
the order relation. Here instead of trying to give a fully formal account3 we will
instead just give an example of a lattice Ppt1, 2, 3uq:

t1u t2u t3u

t1, 2u t2, 3ut1, 3u

t1, 2, 3u

H

3A complete account of lattice theory and Hasse diagrams can be found in [5]

13

Definition 3.4 (JSL Morphism). A function f : L Ñ M between two JSLs is a
JSL morphism if for any S Ď L, fp

Ž

Sq “
Ž

fpSq in M .

Proposition 3.1 (Properties of JSL). Denote JSL the category of JSLs and JSL
morphisms.
JSL has an appropriate factorization system and has products and coproducts.
We list the properties we will use here:

– products :
ś

Li is the set product with pointwise operations and the usual
projections

– coproducts :
š

Li has the underlying set
ś

Li again with pointwise opera-
tions and inclusions:

ιj : Lj Ñ
ž

Li

l ÞÑ plkqkPI

where lk “

#

l if k “ j

K otherwise

– Every f : X Ñ Y in JSL can be factored into a surjection e : X Ñ Impfq

followed by an injection m : Impfq Ñ Y such that f “ m ˝ e.

– Any two JSL morphisms f, g : X Ñ Y can be compared pointwise denoted
f ď g, so JSLpX,Y q forms a partially ordered set.

Definition 3.5 (Comparison functor). The comparison functor K : REL Ñ JSL
takes X ÞÑ PpXq and pR : X ­Ñ Y q ÞÑ Rr´s : PpXq Ñ PpY q, the direct image
of the relation.
Furthermore for R,S : X ­Ñ Y , R Ď S implies KpRq ď KpSq.

Proposition 3.2. The minimal JSL-automaton AJSL
min for a language L is given

by the following construction:

Apstq “ t
ď

wPS

w´1L | S Ď Σ˚u

ApŹqpJq “ L

ApŸqpqq “ J if ϵ P q

Apaqpqq “ a´1q

Where we note that a´1
Ť

wPS w´1L “
Ť

wPS a´1w´1L.
We can also compute for any JSL-automaton A, its automaton with only the reach-
able states, reachpAq which has the states t

Ž

wPS ApŹ wqpJq | S Ď Σ˚u. Sim-
ilarly we can compute the observable automaton obspAq, which has the state set
tw P Σ˚ | Apw Ÿqpqq “ Ju.

14

Definition 3.6 (Distributive lattice). A distributive lattice is a JSL L in which
the binary lattice operations distribute over each other.

x _ py ^ zq “ px _ yq ^ px _ zq (1)

Example 3.6.1.

– The lattice Ppt1, 2, 3uq is distributive.

– The lattice PpXq is distributive.

– The opens of a topological space with binary unions and intersections is dis-
tributive.

Proposition 3.3 (M3-N5). If a lattice L contains an embedded copy of the M3 or
N5 lattice, then L is not distributive.
Where M3 is given by the following Hasse diagram:

a b c

J

K

And N5 is given by the following Hasse diagram:

a

c

b

J

K

Proposition 3.4. Given an NFA A as a functor A : I Ñ REL accepting a language
L, K ˝ A is a JSL-automaton accepting the same language.
It can be explicitly constructed via the subset construction for NFA’s and closing
the set of states under the join operation.
If the determinization is trimmed, then the resulting JSL-automaton is generates
the reachpK ˝ Aq.

Example 3.6.2. We can find examples where the JSL-automaton corresponding to
a trimmed determinized NFA has a non distribute underlying lattice.

0 1 2a b

a

15

We get an N5 lattice after determinizing and taking the reachable subautomaton
in JSL.

0 0, 1 2a b

a

The corresponding transition table of this JSL-automaton is below.

δ a b
H H H

t0u t0, 1u H

t0, 1u t0, 1u t2u

t2u H H

t0, 1, 2u t0, 1u t2u

Below is the Hasse diagram of the reachable JSL-automaton.

t0u t2u

t0, 1u

t0, 1, 2u

H

4 Minimal RFSA via Functors

Now that we have seen the construction for minimal JSLA, the next step will be
to define the J functor and show that the canonical RFSA is deeply related to the
minimal JSLA.

Definition 4.1 (Frame). A frame [8] is a complete lattice pL,ď,
Ž

q such that for
any x P L and S Ď L, x ^

Ž

S “
Ž

tx ^ s | s P Su. When a frame is finite they
coincide with finite distributive lattices.

Example 4.1.1.

– The lattice PpXq is a frame.

– The unit interval with the supremum operation is a frame.

– The lattice of open sets of a topological space is a frame.

16

Definition 4.2 (Completely join-irreducible element). An element x ‰ K in a JSL
L is completely join-irreducible if for any S Ď L, x “

Ž

S implies that x P S.
We denote the set of completely join-irreducible elements of L as J pLq.

Example 4.2.1. The set of join irreducibles can be seen as the best attempt at
finding a minimal amount of elements from which we can regenerate the original
join semi lattice. What is more, in many cases the join irreducibles completely
determine the lattice 4.

– In the lattice Ppt1, 2, 3uq from before, the completely join-irreducible elements
are t1u, t2u, t3u.

– More generally in the lattice PpXq, the completely join-irreducible elements
are the singletons of X.

– For the unit interval with the supremum operation, there are no completely
join irreducible elements since any non zero element can be written as a limit
of points before it.

– For the natural numbers with adjoined J, with the maximum operation, every
non zero, non J element is completely join-irreducible.

Definition 4.3 (Completely Join-prime element). An element x in a JSL L is
completely join-prime if for any S Ď L such that x ď

Ž

S, there is some s P S
such that x ď s.

Proposition 4.1. In a frame L, the completely join-irreducible elements are exactly
the join-prime elements.

Definition 4.4 (Join dense set). A set D Ď L is join-dense in a JSL L if for any
x P L, there is Q Ď D such that x “

Ž

Q.

Example 4.4.1.

– In the lattice Ppt1, 2, 3uq from before, the set tt1u, t2u, t3uu is join-dense.

– More generally in the lattice PpXq, the set of singletons of X is join-dense.

– For the unit interval with the supremum operation, the set of diadic rationals
is join-dense.

Proposition 4.2. If a JSL L is finite, then the set of completely join-irreducible
elements J pLq is join-dense.

4The join irreducibles together with the meet irreducibles are what is commonly studied in the
representation theory of lattices [5]

17

Definition 4.5 (Irreducibles lax functor). We define the irreducibles (lax) functor
J as:

J : JSL Ñ REL

L ÞÑ tx P L | x join irreducibleu

f : L Ñ L1 ÞÑ J pfq :“ tpx, yq P J pLq ˆ J pL1q | y ď fpxqu

5

Proposition 4.3. J is almost a functor, in fact for JSL-morphisms g, f that can
be composed, we have :

1. Jpgq ˝ Jpfq Ď Jpg ˝ fq

2. JpidLq “ idJ pLq

Example 4.5.1. A take the lattices B,PpBq, N5, where N5 has irreducibles a, b, c
with a ă b.
The maps f : B Ñ PpBq, g : PpBq Ñ N5 are given by fpJq “ tJ,Ku and
gptJuq “ a, gptKuq “ c We then have J pfq “ tpJ, tKuq, pJ, tJuqu, J pgq “

tptKu, aq, ptJu, cqu. Thus J pg ˝ fq “ tpJ, aq, pJ, bq, pJ, cqu, but J pgq ˝ J pfq “

tpJ, aq, pJ, cqu!
Hence even in the finite case J is not necessarily strict.

Proposition 4.4. For f : X Ñ Y and g : Y Ñ Z, with Y being such that J pY q

is join dense in Y and Z a frame, then J pg ˝ fq “ J pgq ˝ J pfq.

The notion of residual finite state automaton (RFSA) was introduced in [6] to
address the problem of finding a good notion of minimal automaton for non de-
terministic finite automata (NFA). In [4] they constructed a category of NFA and
noticed that their procedure gives us a good reason why NFA are so badly behaved.
Namely the category that generates them, REL has very few limits and colimits,
which makes it fail to be a regular category. This means that we have no obvious
notion of image factorization that we can use to construct a minimal automaton.
With this motivation in mind it makes sense to look for a restricted version of NFA
that has a good notion of minimal automaton. We quickly recall the definition of
RFSA from [6].

Definition 4.6. A residual finite state automaton RFSA over an alphabet Σ
accepting a language L is an NFA A “ pQ, δ, I, F q accepting L such that for state
q P Q, there is a word u such that Lq “ u´1L. Where Lq is the language recog-
nized from q.

5This is in fact a lax functor once we view REL and JSL in a 2-categorical setting

18

Definition 4.7 (Prime Residual). Given a regular language L, we define the residual
lattice of L as the set of all language derivatives u´1L, together with set union as
lattice structure. We denote this set as RespLq.
A prime residual of L is a join irreducible element of RespLq.

Example 4.7.1. First recall that any regular language has a finite number of resid-
uals.
Let L “ a˚b˚ ` b˚a˚, then RespLq is computed via:

a´1L “ a˚b˚

b´1L “ b˚a˚

pabq´1L “ b˚

pbaq´1L “ a˚

The prime residuals are then a˚b˚, b˚a˚, b˚ and a˚, since we cannot write them
as unions of other residuals.

Definition 4.8 (Minimal RFSA). [6, Section 4.5] Given a regular language L, the
minimal RFSA A “ pQ, δ, I, F q recognizing L is given by:

Q “ tw´1L | w´1L prime residualu “ J pRespLqq

I “ tw´1L | w´1L Ď Lu

F “ tw´1L | ϵ P w´1Lu

δapw´1Lq “ tv´1L P Q | v´1L Ď pwaq´1Lu

Proposition 4.5. J ˝ Amin, where A is the minimal JSL-automaton accepting L
is generates the canonical RFSA recognizing L. This automaton denoted JgpLq is
generated by each letter transition of J ˝ Amin via its graph.

Lemma 4.6. J ˝ A and A accept the same language.

Example 4.8.1. We will now give a worked example from the original paper [6]
using our framework.
We start off with the following RFSA recognizing a˚b˚ ` b˚a˚:

19

1 2

3 4

a

b

ba

ab

Then we determinize and keep the reachable part of the JSLA:

1, 3

2, 3 4

1, 4 2

a

b

a

b

b

a
b

a

Now we can compute the minimal RFSA, by computing the language derivatives by
hand:

L “ a˚b˚ ` b˚a˚

a´1L “ a˚b˚

b´1L “ b˚a˚

pabq´1L “ b˚

pbaq´1L “ a˚

20

We see that the only prime derivatives J pRespLqq are:

a´1L “ a˚b˚

b´1L “ b˚a˚

pabq´1L “ b˚

pbaq´1L “ a˚

These then become our states:

a˚b˚ b˚

b˚a˚ a˚

b

a b

a

b

a

Now we can do a sanity check and apply the observable states check. We get a
mapping defined on the join irreducibles:

t1, 3u ÞÑ L

t2, 3u ÞÑ a˚b˚

t4u ÞÑ b˚

t1, 4u ÞÑ b˚a˚

t2u ÞÑ a˚

Note that the image of this map generates a new lattice:

a˚ b˚

a˚b˚ b˚a˚

L

H

With the exact 4 join irreducibles which we would expect.

21

We would like to view RFSA as NFA with extra structure. Notice that the def-
inition of RFSA 4.6 has some some sort of assignment from states q to words w
such that Lq “ w´1L. What we want to do is state everything related to RFSA in
terms of REL morphisms. We propose the following definition of RFSA.

Definition 4.9. An RFSA over an alphabet Σ accepting a language L is an NFA
A accepting L such that there is a relation char : Apstq ­Ñ Ainitpstq such that
the following commutes in REL, where the morphisms denoted by ! are the unique
morphisms into the final object:

Apstq Ainitpstq

Afinalpstq

char
p

!Qstp !init
st p

RFSA then denotes the full subcategory of NFA satisfying the existence of such a
morphism.

We would now like to see if this definition makes sense:

Proposition 4.7. The categorical definition and the usual one coincide.

Proposition 4.8. If f : L Ñ L1 is a regular JSL epimorphism where L satisfies
DCC, that is a surjective jsl morphism, then J pfq is a surjective relation. Moreover,
for each y P J pY q there is some x P J pXq such that fpxq “ y.

Lemma 4.9. K and J act strictly on initial and final automata, furthermore they
preserve them.

Proposition 4.10. Given the automaton accepting the language L defined by JgpLq

is in fact an RFSA and coincides with the canonical RFSA.

One could hope that the extra structure of the minimal jsla could be enough to
make sure the applying J would give back a strict functor.
But we can find very small examples where even this fails.

Example 4.9.1. We want to have an automaton which determinizes to an N5

lattice. And has a top element as its initial state. We construct a similar counterex-
ample as in 4.5.1. We want the initial state to be mapped to itself.
Take the following NFA A:

22

0 1 2c

a, c

a, b

a, b

Which determinizes into reachpK ˝ Aq:

012

01 0

12

a, b

b

a

c

c

a

c

This gives us an N5 lattice:

t0u t1, 2u

t0, 1u

t0, 1, 2u

H

We give the table for δ:

δ a b c
H H H H

t0u t0u H t0, 1u

t0, 1u t0u H t0, 1u

t1, 2u t1, 2u t1, 2u H

t0, 1, 2u t0, 1, 2u t1, 2u t0, 1u

23

We could choose final states to make sure nothing gets identified in the obs step.
So now applying J , we get that J pδaqrt0, 1, 2us “ tt0u, t1, 2uu, but J pδapt0, 1, 2uqq “

tt0u, t0, 1u, t1, 2uu. After seeing this example, it is not too hard to extend it to
an example where one transition sends every non-empty state to t0, 1, 2u playing
the role of the initial map here. This means that in general J is not strict on the
minimal JSLA for a language!

5 Conclusion

We noticed that making canonical NFA work in our framework quickly introduced
the added complexity of having to consider the ordering that relations of the same
domain and codomain introduce, which quickly lead us to find the right level of
generality to deal with this problem. A lot of the problems are that we have no good
way of interpreting the fact that the functor J is lax, this making any automaton
composed with J potentially lax. The majority of the project was spent trying to
understand the J functor on when it behaves nicely. By using this lax functor we
found that the minimization of join-semilattices is deeply related to the minimization
of RFSA, which confirms a certain folklore theorem about RFSA that had been flying
around. The fact that strictness of the functor J and that it lead to questions about
what a lax automaton could be shows that there is still a lot of work to be done
in this area and that this topic is still worth exploring. We plan on continuing our
research, especially on how to interpret the fact that the RFSA is generated by a
lax functor and whether this is a more general phenomenon which requires further
investigation. There is also interest in studying the J functor on its own, since it
seems to be an example of a very lax kind of adjunction.

References

[1] Jǐŕı Adámek, Robert S. R. Myers, Henning Urbat, and Stefan Milius. On
Continuous Nondeterminism and State Minimality. Electron. Notes Theor.
Comput. Sci., 308:3–23, October 2014.

[2] Miko laj Bojańczyk. Recognisable Languages over Monads. In Developments
in Language Theory, pages 1–13. Springer, Cham, Switzerland, July 2015.

[3] Janusz Brzozowski and Hellis Tamm. Theory of átomata. Theoretical Com-
puter Science, 539:13–27, 2014.

[4] Thomas Colcombet and Daniela Petrişan. Automata Minimization: a Func-
torial Approach. Logical Methods in Computer Science, 16, Issue 1, March
2020.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, England, UK, April 2002.

[6] François Denis, Aurélien Lemay, and Alain Terlutte. Residual Finite State
Automata. Fundam. Inform, 51:339–368, January 2002.

24

[7] Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A Quasiorder-based Perspec-
tive on Residual Automata. arXiv, July 2020.

[8] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck.
Mem. Amer. Math. Soc., 1984.

[9] C. Kupke and Y. Venema. Coalgebraic Automata Theory: Basic Results.
Logical Methods in Computer Science, 4, Issue 4, November 2008.

[10] Hendrik Maarand and Hellis Tamm. Yet Another Canonical Nondeterministic
Automaton. In Descriptional Complexity of Formal Systems, pages 184–196.
Springer, Cham, Switzerland, August 2022.

[11] Paul-André Melliès and Noam Zeilberger. Parsing as a lifting problem and the
Chomsky-Schützenberger representation theorem, July 2022. [Online; accessed
13. Jun. 2024].

[12] E. Riehl. Category theory in context. Aurora: Dover modern math originals.
Dover Publications, 2017.

[13] E. Riehl and E. Riehl. FACTORIZATION SYSTEMS, 2008. [Online; accessed
7. Mar. 2024].

[14] Hellis Tamm. Generalization of the Double-Reversal Method of Finding a
Canonical Residual Finite State Automaton. In Descriptional Complexity of
Formal Systems, pages 268–279. Springer, Cham, Switzerland, June 2015.

25

	Introduction
	Functorial approach
	Minimization in JSL
	Minimal RFSA via Functors
	Conclusion

