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Overview

We study different instances of compactness for different
lax-idempotent monads.

Contributions:

• An abstract framework for studying compactness for
Lax-Idempotent monads

• An application to opfibrations
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Compactness for poset-enriched categories

Familiar properties:

• In a Poset admitting all directed joins (DCPO) D, x P D is called
compact if for any directed S, we have:

x ď
ł

S ùñ Ds P S : x ď s

• In a complete join semilattice D, x P D is called completely join
prime if for any S, we have:

x ď
ł

S ùñ Ds P S : x ď s

With related theorems:
• Pos is equivalent to the category of algebraic DCPO’s with DCPO
morphisms preserving compact elements

• Pos is equivalent to the category of Sup-Lattices generated by
their completely join prime elements with sup lattice morphisms
preserving these.

3 / 23



Compactness for poset-enriched categories

Familiar properties:

• In a Poset admitting all directed joins (DCPO) D, x P D is called
compact if for any directed S, we have:

x ď
ł

S ùñ Ds P S : x ď s

• In a complete join semilattice D, x P D is called completely join
prime if for any S, we have:

x ď
ł

S ùñ Ds P S : x ď s

With related theorems:
• Pos is equivalent to the category of algebraic DCPO’s with DCPO
morphisms preserving compact elements

• Pos is equivalent to the category of Sup-Lattices generated by
their completely join prime elements with sup lattice morphisms
preserving these.

3 / 23



Compactness for poset-enriched categories

Familiar properties:

• In a Poset admitting all directed joins (DCPO) D, x P D is called
compact if for any directed S, we have:

x ď
ł

S ùñ Ds P S : x ď s

• In a complete join semilattice D, x P D is called completely join
prime if for any S, we have:

x ď
ł

S ùñ Ds P S : x ď s

With related theorems:

• Pos is equivalent to the category of algebraic DCPO’s with DCPO
morphisms preserving compact elements

• Pos is equivalent to the category of Sup-Lattices generated by
their completely join prime elements with sup lattice morphisms
preserving these.

3 / 23



Compactness for poset-enriched categories

Familiar properties:

• In a Poset admitting all directed joins (DCPO) D, x P D is called
compact if for any directed S, we have:

x ď
ł

S ùñ Ds P S : x ď s

• In a complete join semilattice D, x P D is called completely join
prime if for any S, we have:

x ď
ł

S ùñ Ds P S : x ď s

With related theorems:
• Pos is equivalent to the category of algebraic DCPO’s with DCPO
morphisms preserving compact elements

• Pos is equivalent to the category of Sup-Lattices generated by
their completely join prime elements with sup lattice morphisms
preserving these.

3 / 23



Compactness for poset-enriched categories

Familiar properties:

• In a Poset admitting all directed joins (DCPO) D, x P D is called
compact if for any directed S, we have:

x ď
ł

S ùñ Ds P S : x ď s

• In a complete join semilattice D, x P D is called completely join
prime if for any S, we have:

x ď
ł

S ùñ Ds P S : x ď s

With related theorems:
• Pos is equivalent to the category of algebraic DCPO’s with DCPO
morphisms preserving compact elements

• Pos is equivalent to the category of Sup-Lattices generated by
their completely join prime elements with sup lattice morphisms
preserving these. 3 / 23



Motivation

We want to understand equivalences of the shape:

tbase-objectsu tcompactly-generatedu

cocompletion

generators

This is for example the shape of Gabriel-Ulmer Duality
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Preliminaries: 2-Categories

Intuition. A 2-category is a category-like structure with objects, arrows
and 2-cells which are arrows between arrows.

A B C

f

g

h
α

Examples:
Pos: Posets, order preserving functions, pointwise comparisons
Cat: Locally small categories, functors, natural transformations
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Preliminaries: Adjunctions in 2-Categories

Definition. An adjunction f % g in a 2-category is a pair of arrows
f : a Ñ b, g : b Ñ a with 2-cells η : 1 ñ gf and ϵ : fg ñ 1 satisfying the
triangle identities:

A B

“ A B

A B

B A

“ B A

B A

f

id
g id

f

f

g

id
f

id
g

g

η

ϵ

ϵ

η
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Basic Notions of Lax-Idempotent Monads

Lax-idempotent monads give us a setting for "cocompletions":

1. for categories: freely adjoining a class of colimits

2. for posets: freely adding joins

3. for multicategories: freely making them representable

4. for hyperdoctrines: freely adding existential quantification
between the fibers
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Basic notions of Lax-Idempotent Monads

Definition.1 A (pseudo) 2-monad on a 2-category K, consists of the
following data:

• a pseudo-2-functor T : K Ñ K
• pseudo-natural transformations µ : T2 Ñ T and η : 1 Ñ T

• invertible modifications:
T3 T2 T T2 T

T2 T T

µT

Tµ µ

ηT

id
µ

Tη

id

µ

Satisfying coherence axioms

1Blackwell, R., Kelly, G. M., & Power, A. J. (1989).Two-dimensional
monad theory. J. Pure Appl. Algebra, 59(1), 1–41.
https://doi.org/10.1016/0022-4049(89)90160-6
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Basic Notions of Lax-Idempotent monads

Definition. A pseudo 2-monad pT : K Ñ K, µ, ηq on a 2-category K is
lax-idempotent (or KZ) when we have that for every object X P K:

T2X

TX

ηTXTηX %%

This adjoint cylinder induces a 2-cell θ : Tη ñ ηT, so the idempotence
becomes lax

1Kock, A. (1995).Monads for which structures are adjoint to units. J.
Pure Appl. Algebra, 104(1), 41–59
Zöberlein, V. (1976).Doctrines on 2-categories.. Mathematische
Zeitschrift, 148, 267–280. http://eudml.org/doc/172368
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Examples of Lax-Idempotent Monads on Categories

P : Cat Ñ Cat

small colimit completion, µ: colimit, η: yoneda embedding

Ind : Cat Ñ Cat

small ind-completion on Cat, µ: filtered colimit, η: yoneda embedding

Non-example. Free monoidal category on a category

10 / 23
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Examples of Lax-Idempotent Monads on Posets

D : Pos Ñ Pos

down-sets, µ: join, η: principal ideal

Idl : Pos Ñ Pos

ideals, µ: directed join, η: principal ideal
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Algebras of Lax-Idempotent Monads

Proposition.2 The (pseudo-) algebras of a lax-idempotent monad
pT : B Ñ B, µ, ηq are pairs pX, α : TX Ñ Xq such that α % ηX and
αηX – id.

• For P : cocomplete categories

• For Ind: categories admitting all filtered colimits

• For D: complete join-semi lattices (Sup-Lattices)

• For Idl: posets admitting all directed joins (DCPO)

For l.i. monads being an algebra is a property!

2ZÃűberlein1976; Kock, A. (1995).Monads for which structures are
adjoint to units. J. Pure Appl. Algebra, 104(1), 41–59.
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Forms of compactness

For a Sup-Lattice X, x P X is completely join prime if:

x ď
ł

S ô Ds P S : x ď s

When S is downwards closed we can restate this as:

x ď
ł

S ôÓ x Ď S

So the "compact" elements with respect to the down-set monad are
the ones where the unit ηX behaves like a left adjoint to the algebra α.
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General compactness

Definition. A morphism x : A Ñ X for an algebra pX, αq is T-compact if
we have that:

ηXx ñ u
x ñ αu

natural in A. Formally this means that:

TX

A X

α
ηXx

x

is an absolute left lifting diagram, where the 2-cell is part of the iso
αηX – id.
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General compactness on Categories

• For X cocomplete, x : 1 Ñ X : x is P-compact iff it is atomic in the
sense that

hompx,´q : X Ñ SET

preserves small colimits.

• For X ind-cocomplete, x : 1 Ñ X is Ind-compact when it is a
compact-object, i.e.

hompx,´q : X Ñ SET

preserves all filtered colimits.

15 / 23



General compactness on Posets

• For a DCPO D, x : 1 Ñ D is Idl-compact when it is a
compact-element, i.e.

x ď p´q : D Ñ 2

preserves directed joins

• For a Sup-Lattice L, x : 1 Ñ L is D-compact when it is a
completely join prime-element, i.e.

x ď p´q : L Ñ 2

preserves all joins

16 / 23



Opfibration Monad

Definition. For F : E Ñ B, we define the comma category F Ó B with
objects f : Fe Ñ b and morphisms commuting squares.

e Fe b

e1 Fe1 b1

g

f

Fg h

f1

17 / 23



Opfibration Monad

Proposition.3 There is a lax-idempotent monad OP : Cat{B Ñ Cat{B
defined on objects by taking:

pF : E Ñ Bq ÞÑ pF Ó B Ñ Bq

The unit ηF : E Ñ F Ó B takes e ÞÑ idFpeq : Fpeq Ñ Fpeq

The multiplication µ acts via composition.

3Kock, A. (2013).Fibrations as Eilenberg-Moore algebras. arXiv.
https://doi.org/10.48550/arXiv.1312.1608
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Opfibration Monad

A p : E Ñ B is an OP-algebra if ηP : E Ñ P Ó B has a left adjoint which
commutes with the projections.

E P Ó B

B

ηP

P

α

Π

%

Thus each f : Ppeq Ñ b has a specified cocartesian lift e Ñ αpfq given
by the unit of the adjunction α % ηP.
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General compactness for opfibrations

For a (split) opfibration p : E Ñ B, e P E is OP-compact if we have the
following lifting property against cocartesian arrows:

e a

b

D!

@
@cocart

In other words, e is OP-compact iff it is left orthogonal to cocartesian
arrows in E.
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Enough compact objects

Definition. An opfibration p : E Ñ B has enough OP-compact objects
when every e P E is the codomain of a cocartesian arrow with
compact domain.

Proposition. An opfibration p : E Ñ B with enough OP-compact
objects is free, i.e. of the form OPpfq for some f : C Ñ B.

21 / 23



Mnemetic Monads

Proposition. For T “ OP, Idl,D we have that KTX » X, where KpX, αq is
the universal compact arrow relative to the algebra pX, αq.

Non-example. For the P , KTX fi X in general. (Cauchy completion)

Definition. A lax-idempotent monad T is mnemetic when for any X,
KTX » X.
Proposition. T is mnemetic iff the unit of the monad is the inverter of
the 2-cell depicted:

T2X

TX

X

TηX ηTX

ηX

θ

22 / 23



Conclusions

What we saw:

• An abstract criterion for compactness

• A way of using it to extract theorems about free algebras

Ongoing work:

• Understand the lax idempotent monad on multicategories
through this lens

• Way-Below arrows and Continuous Algebras
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