Compactness for Lax Idempotent Monads

Quentin Schroeder

LIPN Sorbonne Paris Nord, France

Overview

We study different instances of compactness for different lax-idempotent monads.

Contributions:

Overview

We study different instances of compactness for different lax-idempotent monads.

Contributions:

 An abstract framework for studying compactness for Lax-Idempotent monads

Overview

We study different instances of compactness for different lax-idempotent monads.

Contributions:

- An abstract framework for studying compactness for Lax-Idempotent monads
- An application to opfibrations

Familiar properties:

 In a Poset admitting all directed joins (DCPO) D, x ∈ D is called compact if for any directed S, we have:

$$x\leqslant\bigvee S\implies\exists s\in S:x\leqslant s$$

Familiar properties:

 In a Poset admitting all directed joins (DCPO) D, x ∈ D is called compact if for any directed S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

 In a complete join semilattice D, x ∈ D is called completely join prime if for any S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

Familiar properties:

 In a Poset admitting all directed joins (DCPO) D, x ∈ D is called compact if for any directed S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

 In a complete join semilattice D, x ∈ D is called completely join prime if for any S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

With related theorems:

Familiar properties:

 In a Poset admitting all directed joins (DCPO) D, x ∈ D is called compact if for any directed S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

 In a complete join semilattice D, x ∈ D is called completely join prime if for any S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

With related theorems:

 Pos is equivalent to the category of algebraic DCPO's with DCPO morphisms preserving compact elements

Familiar properties:

 In a Poset admitting all directed joins (DCPO) D, x ∈ D is called compact if for any directed S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

 In a complete join semilattice D, x ∈ D is called completely join prime if for any S, we have:

$$x \leqslant \bigvee S \implies \exists s \in S : x \leqslant s$$

With related theorems:

- Pos is equivalent to the category of algebraic DCPO's with DCPO morphisms preserving compact elements
- Pos is equivalent to the category of Sup-Lattices generated by their completely join prime elements with sup lattice morphisms preserving these.

Motivation

We want to understand equivalences of the shape:

Motivation

We want to understand equivalences of the shape:

This is for example the shape of Gabriel-Ulmer Duality

Preliminaries: 2-Categories

Intuition. A 2-category is a category-like structure with objects, arrows and 2-cells which are arrows between arrows.

Examples:

Pos: Posets, order preserving functions, pointwise comparisons

Cat: Locally small categories, functors, natural transformations

Preliminaries: Adjunctions in 2-Categories

Definition. An adjunction $f \dashv g$ in a 2-category is a pair of arrows $f: a \rightarrow b, g: b \rightarrow a$ with 2-cells $\eta: 1 \Rightarrow gf$ and $\epsilon: fg \Rightarrow 1$ satisfying the triangle identities:

Lax-idempotent monads give us a setting for "cocompletions":

1. for categories: freely adjoining a class of colimits

- 1. for categories: freely adjoining a class of colimits
- 2. for posets: freely adding joins

- 1. for categories: freely adjoining a class of colimits
- 2. for posets: freely adding joins
- 3. for multicategories: freely making them representable

- 1. for categories: freely adjoining a class of colimits
- 2. for posets: freely adding joins
- 3. for multicategories: freely making them representable
- 4. for hyperdoctrines: freely adding existential quantification between the fibers

Definition. A (pseudo) 2-monad on a 2-category \mathcal{K} , consists of the following data:

¹Blackwell, R., Kelly, G. M., & Power, A. J. (1989).**Two-dimensional monad theory.** *J. Pure Appl. Algebra*, *59*(1), 1–41. https://doi.org/10.1016/0022-4049(89)90160-6

Definition. A (pseudo) 2-monad on a 2-category \mathcal{K} , consists of the following data:

• a pseudo-2-functor $T: \mathcal{K} \to \mathcal{K}$

¹Blackwell, R., Kelly, G. M., & Power, A. J. (1989).**Two-dimensional monad theory.** *J. Pure Appl. Algebra*, *59*(1), 1–41. https://doi.org/10.1016/0022-4049(89)90160-6

Definition. A (pseudo) 2-monad on a 2-category \mathcal{K} , consists of the following data:

- a pseudo-2-functor $T: \mathcal{K} \to \mathcal{K}$
- pseudo-natural transformations $\mu: T^2 \to T$ and $\eta: 1 \to T$

¹Blackwell, R., Kelly, G. M., & Power, A. J. (1989).**Two-dimensional monad theory.** *J. Pure Appl. Algebra*, *59*(1), 1–41. https://doi.org/10.1016/0022-4049(89)90160-6

Definition. A (pseudo) 2-monad on a 2-category \mathcal{K} , consists of the following data:

- a pseudo-2-functor $T: \mathcal{K} \to \mathcal{K}$
- pseudo-natural transformations $\mu: T^2 \to T$ and $\eta: 1 \to T$
- · invertible modifications:

Satisfying coherence axioms

¹Blackwell, R., Kelly, G. M., & Power, A. J. (1989).**Two-dimensional monad theory.** *J. Pure Appl. Algebra*, *59*(1), 1–41. https://doi.org/10.1016/0022-4049(89)90160-6

Definition. A pseudo 2-monad $(T : \mathcal{K} \to \mathcal{K}, \mu, \eta)$ on a 2-category \mathcal{K} is lax-idempotent (or KZ) when we have that for every object $X \in \mathcal{K}$:

Zeitschrift, 148, 267–280. http://eudml.org/doc/172368

¹Kock, A. (1995). **Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59

Zöberlein, V. (1976). **Doctrines on 2-categories.** *Mathematische*

Definition. A pseudo 2-monad $(T : \mathcal{K} \to \mathcal{K}, \mu, \eta)$ on a 2-category \mathcal{K} is lax-idempotent (or KZ) when we have that for every object $X \in \mathcal{K}$:

This adjoint cylinder induces a 2-cell $\theta: T\eta \Rightarrow \eta T$, so the idempotence becomes lax

¹Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59

Zöberlein, V. (1976). **Doctrines on 2-categories.** *Mathematische Zeitschrift*, 148, 267–280. http://eudml.org/doc/172368

Examples of Lax-Idempotent Monads on Categories

 $\mathcal{P}:\mathsf{Cat}\to\mathsf{Cat}$

small colimit completion, μ : colimit, η : yoneda embedding

Examples of Lax-Idempotent Monads on Categories

 $\mathcal{P}:\mathsf{Cat}\to\mathsf{Cat}$

small colimit completion, μ : colimit, η : yoneda embedding

Ind : Cat → Cat

small ind-completion on Cat, μ : filtered colimit, η : yoneda embedding

Examples of Lax-Idempotent Monads on Categories

 $\mathcal{P}:\mathsf{Cat}\to\mathsf{Cat}$

small colimit completion, μ : colimit, η : yoneda embedding

Ind : Cat → Cat

small ind-completion on Cat, μ : filtered colimit, η : yoneda embedding

Non-example. Free monoidal category on a category

Examples of Lax-Idempotent Monads on Posets

 $\mathcal{D}:\mathsf{Pos}\to\mathsf{Pos}$

down-sets, μ : join, η : principal ideal

Examples of Lax-Idempotent Monads on Posets

 $\mathcal{D}:\mathsf{Pos}\to\mathsf{Pos}$

down-sets, μ : join, η : principal ideal

Idl: Pos → Pos

ideals, μ : directed join, η : principal ideal

Proposition.² The (pseudo-) algebras of a lax-idempotent monad $(T: B \to B, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

• For \mathcal{P} : cocomplete categories

²ZÃűberlein1976; Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59.

Proposition.² The (pseudo-) algebras of a lax-idempotent monad $(T: B \to B, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits

²ZÃűberlein1976; Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59.

Proposition.² The (pseudo-) algebras of a lax-idempotent monad $(T: B \to B, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)

²ZÃűberlein1976; Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59.

Proposition.² The (pseudo-) algebras of a lax-idempotent monad $(T:B\to B,\mu,\eta)$ are pairs $(X,\alpha:TX\to X)$ such that $\alpha\dashv\eta_X$ and $\alpha\eta_X\cong id$.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)
- For Idl: posets admitting all directed joins (DCPO)

²ZÃűberlein1976; Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59.

Proposition.² The (pseudo-) algebras of a lax-idempotent monad $(T: B \to B, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)
- For Idl: posets admitting all directed joins (DCPO)

For l.i. monads being an algebra is a property!

²ZÃűberlein1976; Kock, A. (1995).**Monads for which structures are adjoint to units.** *J. Pure Appl. Algebra*, 104(1), 41–59.

Forms of compactness

For a Sup-Lattice X, $x \in X$ is completely join prime if:

$$x\leqslant\bigvee S\Leftrightarrow\exists s\in S:x\leqslant s$$

When S is downwards closed we can restate this as:

$$\mathit{X} \leqslant \bigvee \mathit{S} \Leftrightarrow \downarrow \mathit{X} \subseteq \mathit{S}$$

So the "compact" elements with respect to the down-set monad are the ones where the unit η_X behaves like a left adjoint to the algebra α .

Forms of compactness

For a Sup-Lattice X, $x \in X$ is completely join prime if:

$$x\leqslant\bigvee S\Leftrightarrow\exists s\in S:x\leqslant s$$

When S is downwards closed we can restate this as:

$$\mathbf{X} \leqslant \alpha \mathbf{S} \Leftrightarrow \eta_{\mathbf{X}} \mathbf{X} \subseteq \mathbf{S}$$

So the "compact" elements with respect to the down-set monad are the ones where the unit η_X behaves like a left adjoint to the algebra α .

General compactness

Definition. A morphism $x : A \to X$ for an algebra (X, α) is T-compact if we have that:

$$\frac{\eta_{X}X \Rightarrow U}{X \Rightarrow \alpha U}$$

natural in A. Formally this means that:

is an absolute left lifting diagram, where the 2-cell is part of the iso $\alpha\eta_{\rm X}\cong {\it id}$.

General compactness on Categories

• For \mathfrak{X} cocomplete, $x:\mathbf{1}\to\mathfrak{X}:x$ is \mathcal{P} -compact iff it is atomic in the sense that

$$hom(x, -) : \mathfrak{X} \to SET$$

preserves small colimits.

 For X ind-cocomplete, x : 1 → X is Ind-compact when it is a compact-object, i.e.

$$hom(x, -) : \mathfrak{X} \to SET$$

preserves all filtered colimits.

General compactness on Posets

 For a DCPO D, x : 1 → D is Idl-compact when it is a compact-element, i.e.

$$x \leq (-): D \rightarrow 2$$

preserves directed joins

 For a Sup-Lattice L, x : 1 → L is D-compact when it is a completely join prime-element, i.e.

$$x \leq (-): L \rightarrow 2$$

preserves all joins

Opfibration Monad

Definition. For $F: E \to B$, we define the comma category $F \downarrow B$ with objects $f: Fe \to b$ and morphisms commuting squares.

Opfibration Monad

Proposition.³ There is a lax-idempotent monad $OP: Cat/B \rightarrow Cat/B$ defined on objects by taking:

$$(F:E \to B) \mapsto (F \downarrow B \to B)$$

The unit $\eta_F: E \to F \downarrow B$ takes $e \mapsto id_{F(e)}: F(e) \to F(e)$ The multiplication μ acts via composition.

³Kock, A. (2013). **Fibrations as Eilenberg-Moore algebras.** *arXiv*. https://doi.org/10.48550/arXiv.1312.1608

Opfibration Monad

A $p: E \to B$ is an OP-algebra if $\eta_P: E \to P \downarrow B$ has a left adjoint which commutes with the projections.

Thus each $f: P(e) \to b$ has a specified cocartesian lift $e \to \alpha(f)$ given by the unit of the adjunction $\alpha \to \eta_P$.

General compactness for opfibrations

For a (split) opfibration $p: E \to B$, $e \in E$ is OP-compact if we have the following lifting property against cocartesian arrows:

In other words, e is OP-compact iff it is left orthogonal to cocartesian arrows in *E*.

Enough compact objects

Definition. An opfibration $p: E \to B$ has enough OP-compact objects when every $e \in E$ is the codomain of a cocartesian arrow with compact domain.

Proposition. An opfibration $p: E \to B$ with enough OP-compact objects is free, i.e. of the form OP(f) for some $f: C \to B$.

Mnemetic Monads

Proposition. For $T = \mathsf{OP}$, Idl , \mathcal{D} we have that $\mathsf{K}TX \simeq X$, where $\mathsf{K}(X,\alpha)$ is the universal compact arrow relative to the algebra (X,α) .

Non-example. For the \mathcal{P} , $KTX \not\simeq X$ in general. (Cauchy completion)

Definition. A lax-idempotent monad T is mnemetic when for any X, $KTX \simeq X$.

Proposition. *T* is mnemetic iff the unit of the monad is the inverter of the 2-cell depicted:

$$T^{2}X$$

$$T\eta_{X} \uparrow \xrightarrow{\theta} \uparrow \eta_{TX}$$

$$TX$$

$$\eta_{X} \uparrow$$

$$X$$

Conclusions

What we saw:

- · An abstract criterion for compactness
- A way of using it to extract theorems about free algebras

Ongoing work:

- Understand the lax idempotent monad on multicategories through this lens
- · Way-Below arrows and Continuous Algebras